What is Recursion?

- **Recursion** - when a method calls itself
- Classic example - the factorial function:
 \[n! = 1 \cdot 2 \cdot 3 \cdot \cdots \cdot (n-1) \cdot n \]
- Recursive definition:

\[
f(n) = \begin{cases}
1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
\end{cases}
\]
Recursion – An Example

• As a Java method:

```java
// recursive factorial function
public static int recursiveFactorial(int n) {
    if (n == 0) // basis case
        return 1;
    else // recursive case
        return n * recursiveFactorial(n - 1);
}
```

Linear Recursion

• *Test for base cases.*
 – Begin by testing for a set of base cases (there should be at least one).
 – Every possible chain of recursive calls *must* eventually reach a base case, and the handling of each base case should not use recursion.
Linear Recursion (continued)

- **Recur once.**
 - Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
 - Define each possible recursive call so that it makes progress towards a base case.

A Simple Example of Linear Recursion

Algorithm LinearSum(A, n):

Input:
A integer array A and an integer n = 1, such that A has at least n elements

Output:
The sum of the first n integers in A

if n = 1 then
 return A[0]
else
 return LinearSum(A, n - 1) + A[n - 1]

Example recursion trace:
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ **then**

- Swap $A[i]$ and $A[j]$
- ReverseArray($A, i + 1, j - 1$)

return

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as ReverseArray(A, i, j), not ReverseArray(A).
Computing Powers

• The power function, \(p(x,n) = x^n \), can be defined recursively:
 \[
 p(x,n) = \begin{cases}
 1 & \text{if } n = 0 \\
 x \cdot p(x, n-1) & \text{else}
 \end{cases}
 \]

• This leads to an power function that runs in \(O(n) \) time (for we make \(n \) recursive calls).

• We can do better than this, however.

Recursive Squaring

• We can derive a more efficient linearly recursive algorithm by using repeated squaring:
 \[
 p(x,n) = \begin{cases}
 1 & \text{if } x = 0 \\
 x \cdot p(x, (n-1)/2)^2 & \text{if } x > 0 \text{ is odd} \\
 p(x, n/2)^2 & \text{if } x > 0 \text{ is even}
 \end{cases}
 \]

• For example,
 \[
 2^4 = 2^{(4/2)}^2 = (2^{4/2})^2 = (2^2)^2 = 4^2 = 16 \\
 2^5 = 2^{1+(4/2)}^2 = 2(2^{4/2})^2 = 2(2^2)^2 = 2(4^2) = 32 \\
 2^6 = 2^{(6/2)}^2 = (2^{6/2})^2 = (2^3)^2 = 8^2 = 64 \\
 2^7 = 2^{1+(6/2)}^2 = 2(2^{6/2})^2 = 2(2^3)^2 = 2(8^2) = 128.
 \]
A Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0
Output: The value x^n
if $n = 0$ then
 return 1
if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$

Analyzing the Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0
Output: The value x^n
if $n = 0$ then
 return 1
if n is odd then
 $y = \text{Power}(x, (n - 1)/2)$
 return $x \cdot y \cdot y$
else
 $y = \text{Power}(x, n/2)$
 return $y \cdot y$

Each time we make a recursive call we halve the value of n; hence, we make log n recursive calls. That is, this method runs in $O(\log n)$ time.

It is important that we used a variable twice here rather than calling the method twice.
Tail Recursion

- **Tail recursion** occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).

Example:

Algorithm IterativeReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

while *i < j* do
 Swap A[i] and A[j]
 i = i + 1
 j = j - 1
return
Binary Recursion

• Binary recursion occurs whenever there are two recursive calls for each non-base case.
• Example: the DrawTicks method for drawing ticks on an English ruler.

```
// drawOneTick() - draw a tick with no label
public static void drawOneTick(int tickLength) {
    drawOneTick(tickLength, -1);
}

// drawOneTick() - draw one tick with a label
public static void drawOneTick(int tickLength, int tickLabel) {
    for (int i = 0; i < tickLength; i++)
        System.out.print("-");
    if (tickLabel >= 0)
        System.out.print(" "+tickLabel);
    System.out.print("\n");
}
```
public static void drawTicks(int tickLength) {
 // draw ticks of given length
 if (tickLength > 0) {
 // stop when length drops to 0
 // recursively draw left ticks
 drawTicks(tickLength - 1);

 // draw center tick
 drawOneTick(tickLength);

 // recursively draw right ticks
 drawTicks(tickLength - 1);
 }
}

//drawRuler() – Draw a ruler
public static void drawRuler(int nInches, int majorLength) {
 // draw tick 0 and its label
 drawOneTick(majorLength, 0);

 for (int i = 1; i <= nInches; i++) {
 // draw ticks for this inch
 drawTicks(majorLength - 1);

 // draw tick i and its label
 drawOneTick(majorLength, i);
 }
}

Another Binary Recursive Method

- Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):

- **Input:** An array A and integers i and n
- **Output:** The sum of the n integers in A starting at index i

 if \(n = 1 \) then
 return \(A[i] \)

 return BinarySum(A, i, \(n/2 \)) + BinarySum(A, i + \(n/2 \), \(n/2 \))

Example Trace:

```
0.8
  0.4
    0.2
      0.1
    2.2
      1.1
      2.1
    3.1
  4.2
    4.1
      5.1
    6.1
      6.2
      7.1
```
Computing Fibonacci Numbers

- Fibonacci numbers are defined recursively:
 \[F_0 = 0 \]
 \[F_1 = 1 \]
 \[F_i = F_{i-1} + F_{i-2} \quad \text{for} \ i > 1. \]

Computing Fibonacci Numbers

- As a recursive algorithm (first attempt):

 Algorithm BinaryFib\(k\):

 Input: Nonnegative integer \(k\)

 Output: The \(k\)th Fibonacci number \(F_k\)

 if \(k = 1\) then

 return \(k\)

 else

 return BinaryFib\((k - 1)\) + BinaryFib\((k - 2)\)
Analyzing the Binary Recursion Fibonacci Algorithm

• Let n_k denote number of recursive calls made by BinaryFib(k). Then
 - $n_0 = 1$
 - $n_1 = 1$
 - $n_2 = n_1 + n_0 + 1 = 1 + 1 + 1 = 3$
 - $n_3 = n_2 + n_1 + 1 = 3 + 1 + 1 = 5$
 - $n_4 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
 - $n_5 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
 - $n_6 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
 - $n_7 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
 - $n_8 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$.

• Note that the value at least doubles for every other value of n_k. That is, $n_k > 2^{k/2}$. It is exponential!

A Better Fibonacci Algorithm

• Use linear recursion instead:

 Algorithm LinearFibonacci(k):

 Input: A nonnegative integer k

 Output: Pair of Fibonacci numbers (F_k, F_{k-1})

 if $k = 1$ then
 return (k, 0)
 else
 (i, j) = LinearFibonacci($k - 1$)
 return ($i + j$, i)

• Runs in $O(k)$ time.