
CSC 344 – Algorithms and 

Complexity

Lecture #3 – Internal Sorting

What is the Brute Force Approach?

• A straightforward approach, usually based 

directly on the problem’s statement and 

definitions of the concepts involved

• Examples:

1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiplying two matrices

4. Searching for a key of a given value in a list



Brute-Force Sorting Algorithm

• Selection Sort

– Scan the array to find its smallest element and swap it with 

the first element.

– Starting with the second element, scan the elements after it 

to find the smallest among them and swap it with the 

second elements.

– Generally, on pass i (0 ≤ i ≤ n-2), find the smallest element 

after A[i] and swap it with A[i]:
A[0] ≤ .   .   . ≤ A[i-1]  |  A[i],  .   .   .  , A[min], .   .   ., A[n-1] 

in their final positions

• Example: 7   3   2   5

Selection Sort

// selectionSort() - The selection sort where we

// seek the ith smallest value and

// swap it into its proper place

void selectionSort(int x[], int n) {

int i, j, min;

for (i = 0;  i < n-1; i++) {

min = i;

for (j = i;  j < n; j++) {

if (x[j] < x[min])

min = j;

swap(x[i], x[min]);

}

}

}



Analysis of Selection Sort

• Time efficiency:

• Space efficiency:

• Stability:

Decrease and Conquer

1. Reduce problem instance to smaller instance of the 

same problem

2. Solve smaller instance

3. Extend solution of smaller instance to obtain solution 

to original instance

• Can be implemented either top-down or bottom-up

• Also referred to as inductive or incremental approach



3 Types of Decrease and Conquer

• Decrease by a constant (usually by 1):

– insertion sort

• Decrease by a constant factor (usually by half)

– binary search 

– exponentiation by squaring

• Variable-size decrease

– Euclid’s algorithm

– Nim-like games

Insertion Sort

• To sort array A[0..n-1], sort A[0..n-2] recursively and 

then insert A[n-1] in its proper place among the 

sorted A[0..n-2]

• Usually implemented bottom up (nonrecursively)

• Example:   Sort  6,  4,  1,  8,  5

6 | 4   1   8   5

4   6 | 1   8   5

1   4   6 | 8   5

1   4   6   8 | 5

1   4   5   6   8



Pseudocode of Insertion Sort 

Analysis of Insertion Sort

• Time efficiency

Cworst(n) = n(n-1)/2 ∈ Θ(n2)

Cavg(n) ≈ n2/4 ∈ Θ(n2)

Cbest(n) = n - 1 ∈ Θ(n) (also fast on almost sorted arrays)

• Space efficiency: in-place

• Stability: yes

• Best elementary sorting algorithm overall



Insertion Sort

// insertionSort() - The insertion sort where we

// seek to insert the next value

// into the sorted portion of the

// array

void insertionSort(int x[], int n) {

int i, j;

int temp;

// Insert the ith element into its

// proper place

for (i = 1;  i < n;  i++) {

// temp is the value to be inserted

temp = x[i];

j = i - 1;

// Work our way from the end of the

// sorted portion of the array to temp's

// proper place

while (j >= 0 && x[j] > temp) {

x[j+1] = x[j];

j = j - 1;

}

x[j+1] = temp;

}

}



Divide and Conquer

• The most-well known algorithm design 

strategy:

1. Divide instance of problem into two or more 

smaller instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by 

combining these solutions

Divide and Conquer Technique 

(continued)



Divide and Conquer Examples

• Sorting: mergesort and quicksort

• Binary tree traversals

• Binary search: decrease-by-half

Mergesort

• Split array A[0..n-1] in two about equal halves and make 

copies of each half  in arrays B and C

• Sort arrays B and C recursively

• Merge sorted arrays B and C into array A as follows:

– Repeat the following until no elements remain in one of the arrays:

– Compare the first elements in the remaining unprocessed portions of 

the arrays

– Copy the smaller of the two into A, while incrementing the index 

indicating the unprocessed portion of that array 

– Once all elements in one of the arrays are processed, copy the 

remaining unprocessed elements from the other array into A.



Pseudocode of Mergesort

Pseudocode of Merge



Mergesort Example

8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9

Analysis of Mergesort

• All cases have same efficiency: Θ(n log n) 

• Number of comparisons in the worst case is close to 

theoretical minimum for comparison-based sorting: 

log2 n! ≈    n log2 n  - 1.44n

• Space requirement: Θ(n) (not in-place)

• Can be implemented without recursion (bottom-up)



Mergesort

// mergeSort() - A recursive version of the merge

// sort, where the array is divided

// into smaller and smaller subarrays

// and then merged together in order

void mergeSort(int x[], int n) {

int *y, *z;

// If the subarrays are n't trivial (size = 1)

// divide them into two subarrays, sort them

// using the merge sort and then merge them

// back together

if (n > 1) {

//  Set up arrays of the required size

y = new int[n/2];

z = new int[n/2];

// Copy the first half of x into y

for (int i = 0;  i < n/2; i++)

y[i] = x[i];

// Copy the second half of x into z

for (int i = n/2, j = 0; i < n; i++)

z[j++] = x[i];



// Sort y and z and then merge them

mergeSort(y, n/2);

mergeSort(z, n/2);

merge(y, n/2, z, n/2, x, n);

}

}

Merge

// merge() - Merge the two subarrays together 

// Maintaining the order

void merge(int b[], int bSize, 

int c[], int cSize,

int a[], int aSize) {

int i = 0, j = 0, k = 0;

// As long as there are still unmerged

// values in both subarrays

while (i < bSize && j < cSize) {

// The smaller of the two values is

// copied back into the larger array



if (b[i] <= c[j])

a[k] = b[i++];

else

a[k] = c[j++];

k = k + 1;

// Copy back the remainder of the

// subarray that still has values that

// were not yet copied back

if (i == bSize) {

for (int m = j;  m < cSize; m++)

a[bSize+m] = c[m];

}

else {

for (int m = i;  m < bSize; m++)

a[cSize+m] = b[m];

}

}



Quicksort

• Select a pivot (partitioning element) – here, the first element

• Rearrange the list so that all the elements in the first s 

positions are smaller than or equal to the pivot and all the 

elements in the remaining n-s positions are larger than or equal 

to the pivot (see next slide for an algorithm)

• Exchange the pivot with the last element in the first (i.e., ≤)

subarray — the pivot is now in its final position

• Sort the two subarrays recursively

p

A[i]≤p A[i]≥p

Hoare’s Partitioning Algorithm



Quicksort Example

• 5   3   1   9   8   2   4   7

Quicksort Example

5 3 1 9 8 2 4 7

2 3 1 4 5 8 9 7

1 2 3 4 5 7 8 9

1 2 3 4 5 7 8 9



QuickSort

// quickSort() - Call the recursive quick

// sort method

void quickSort(int x[], int n) {

quick(x, 0, n-1);

}

Quick

// quick() - Place the pivot in its proper

// place and recursive sort

// every on either side of it

void quick(int x[], int low, int high) {

int pivotPlace;

if (low >= high)

return;

pivotPlace = partition(x, low, high);

quick(x, low, pivotPlace-1);

quick(x, pivotPlace+1, high);

}



Partition

// partition() - reaarange the array so that the

// first value in this portion of the

// array is in its proper place and

// every other element is on the

// correct side of that value

int partition(int x[], int low, int high) {

int pivot;

int i, j;

// The lowest value in this portion

// of the array is the pivot

// and we start rearranging from

// this portion's lower and upper 

// bounds

pivot = x[low];

i = low;

j = high+1;

// We keep moving forward and backward until

// we have another pair of elements to be

// moved

do {

do {

i = i + 1;

} while (x[i] <= pivot);

do {

j = j - 1;

} while (x[j] > pivot);



swap(x[i], x[j]);

}  while (i < j);

// We undo the last swap and swap

// the pivot in its proper place

swap(x[i], x[j]);

swap(x[low], x[j]);

return j;

}

Swap

// swap() - Swap the two parameter's values

void swap(int &a, int &b) {

int temp;

temp = a;

a = b;

b = temp;

}



Analysis of Quicksort

• Best case: split in the middle — Θ(n log n) 

• Worst case: sorted array! — Θ(n2) 

• Average case: random arrays — Θ(n log n)

Analysis of Quicksort

• Improvements:

– better pivot selection: median of three partitioning 

– switch to insertion sort on small subfiles

– elimination of recursion

• These combine to 20-25% improvement

• Considered the method of choice for internal 

sorting of large files (n ≥ 10000)



Heaps and Heapsort

• Definition - A heap is a binary tree with keys at its nodes (one 

key per node) such that:

• It is essentially complete, i.e., all its levels are full except 

possibly the last level, where only some rightmost keys may 

be missing

• The key at each node is ≥ keys at its children

Which One is a Valid Heap?

• NB: Heap’s elements are ordered top down (along any path  

down from its root), but they are not ordered left to right

a heap not a heap not a heap



Some Important Properties of a Heap

• Given n, there exists a unique binary tree with 

n nodes that is essentially complete, with h = 

log2 n

• The root contains the largest key

• The subtree rooted at any node of a heap is 

also a heap

• A heap can be represented as an array

Heap’s Array Representation

Store heap’s elements in an array (whose elements indexed, for 
convenience, 1 to n) in top-down left-to-right order

Example:

– Left child of node j is at 2j

– Right child of node j is at 2j+1

– Parent of node j is at j/2

– Parental nodes are represented in the first n/2 locations

9

1

5 3

4 2

1     2   3     4     5    6

9     5      3     1     4    2



Heap Construction (Bottom-Up)

Step 0: Initialize the structure with keys in the order 

given

Step 1: Starting with the last (rightmost) parental node, 

fix the heap rooted at it, if it doesn’t satisfy the 

heap condition: keep exchanging  it with its 

largest child until the heap condition holds

Step 2: Repeat Step 1 for the preceding parental node

Example of Heap Construction

• Construct a heap for the list 2, 9, 7, 6, 5, 8

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>



Heapsort

• Stage 1: Construct a heap for a given list of n 

keys

• Stage 2: Repeat operation of root removal n-1 

times:

– Exchange keys in the root and in the last 

(rightmost) leaf

– Decrease heap size by 1

– If necessary,  swap new root with larger child until 

the heap condition holds

Pseudocode of Sift Down

From (ni-2)/2 down to 0:

1. if the parent is less than one child or bother 

children:

a. swap the parent with the greater of the two children



Example of Sorting by Heapsort

• Sort the list  2,  9,  7,  6,  5,  8  by Heapsort

Stage 1 (heap construction) Stage 2 (root/max removal)

2   9   7 6   5   8 9 6   8   2   5   7

2   9 8   6   5   7 7   6   8   2   5 | 9

2 9   8   6   5   7 8 6   7   2   5 | 9

9   2 8   6   5   7 5   6   7   2 | 8   9

9   6   8   2   5   7 7 6   5   2 | 8   9

2   6   5 | 7   8   9

6 2   5 | 7   8   9

5   2 | 6   7   8   9

5 2 | 6   7   8   9

2 | 5   6   7   8   9

Analysis of Heapsort

• Stage 1: Build heap for a given list of n keys worst-case

C(n) =  

• Stage 2: Repeat operation of root removal n-1 times (fix heap) 

worst-case

C(n) = 

Both worst-case and average-case efficiency: Θ(nlogn) 

In-place: yes

Stability: no (e.g., 1  1)

Σ 2(h-i) 2i       =   2 ( n – log2(n + 1))  ∈ Θ(n)

i=0
# nodes at level i

Σ
i=1

n-1

2log2 i ∈ Θ(nlogn)



Priority Queue

• A priority queue is the ADT of a set of elements with 
numerical priorities with the following operations:
– Find element with highest priority

– Delete element with highest priority

– Insert element with assigned priority (see below)

• Heap is a very efficient way for implementing priority 
queues

• Two ways to handle priority queue in which
highest priority = smallest number

Insertion of a New Element into a 

Heap

• Insert the new element at last position in heap. 

• Compare it with its parent and, if it violates heap condition,

exchange them

• Continue comparing the new element with nodes up the tree 

until the heap condition is satisfied

• Example:  Insert key 10 

• Efficiency: O(log n)
9

6

2 5

8

7 10

9

6

2 5

10

7 8

> >

10

6

2 5

9

7 8



Heapsort

void heapSort(int *a, int count)

{

int start, end;

/* 

* heapify – Rearrange the element so that the

*    father's value is greater than either son

*/

for (start = (count-2)/2; start >=0; start--) {

siftDown( a, start, count);

}

/* Swap the top element into its proper place

and heapify again  */

for (end=count-1; end > 0; end--) {

swap(a[end],a[0]);

siftDown(a, 0, end);

}

}



Sift Down

void siftDown(int *a, int start, int end)

{

int root = start;

while ( root*2+1 < end ) {

int child = 2*root + 1;

if ((child + 1 < end) 

&& (a[child] < a[child+1])) {

child += 1;

}

if (a[root] < a[child]) {

swap( a[child], a[root] );

root = child;

}

else

return;

}

}



Bubble Sort

• In a bubble sort, we compare adjacent element to 
determine if they are in order with respect to each other.  
If they aren't, we swap them.

• The process is repeated until we can pass through the 
entire array without needing to swap any elements.

• In theory, this should be more efficient than a selection 
sort because you don't need to pass through the array 
more than once if it is alrady in order.

• In practice, this is not necessarily the case; it requires a 
lot of data moves to place any data item in its proper 
position, and it is highly depend on the original order of 
the data items and the direction of the scan.

Bubble Sort 

// bubbleSort() - A bubble sort function

void bubbleSort(int x[], int n) {

bool switched;  // Have we switched them

// this time?

int i = 0, j; // i counts the number of times

// through the array

// j keeps track of which

// element we're up to

int temp; // Holds the value being

// swapped



do {

// We haven't swapped anything yet

switched = false;

// Go through the array and see if any

// two adjacent elements are out of

// order

for (j = 0; j < n - i - 1; j++)

if (x[j] > x[j+1]) {

// If so, swap them

switched = true;

temp = x[j];

x[j] = x[j+1];

x[j+1] = temp;

}

// Count passes through the array

// They shouldn't exceed n

i++;

// If we go a pass without a swap

// we're finished

// If we go through n passes we're

// finished

} while (i < n && switched);

}



Data for a Bubble Sort Example

• 25  13   4  29  14   1  31  18

Tracing the Bubble Sort

25 13 4 29 14 1 31 18

13 4 25 14 1 29 18 31

4 13 14 1 25 18 29 31

4 13 1 14 18 25 29 31

4 1 13 14 18 25 29 31

1 4 13 14 18 25 29 31

1 4 13 14 18 25 29 31

Original

After Pass 1

After Pass 2

After Pass 3

After Pass 4

After Pass 5

After Pass 6

Final scan to 

confirm its in 

order



Bubble Sort vs Cocktail Shaker Sort

• A large value at the beginning of the array will move all the 

way to the end in one pass if the scan goes from beginning to 

end.

• A small value at the end of the array will move all the way to 

the beginning in one pass if the scan goes from end to 

beginning

• In both cases the reverse will require n passes.

• By scanning from beginning to end and then end to beginning 

removes this dependence.  We call such a sort the cocktail 

shaker sort.

Cocktail Shaker Sort

void cocktailShakerSort(int x[], int n) {

bool switched; // Have we switched them

// this time?

int i = 0, j; // i counts the number of times

// through the array

// j keeps track of which

// element we're up to

int temp; // Holds the value being

// swapped



do {

// We haven't swapped anything yet

switched = false;

// First we bubble down

for (j = 0; j < n - i - 1; j++)

if (x[j] > x[j+1]) {

// If so, swap them

switched = true;

temp = x[j];

x[j] = x[j+1];

x[j+1] = temp;

}

// Then we bubble up

for (j = n - i - 2; j > 0; --j)

if (x[j] > x[j+1]) {

// If so, swap them

switched = true;

temp = x[j];

x[j] = x[j+1];

x[j+1] = temp;

}

// Count passes through the array

// They shouldn't exceed n

i++;



// If we go a pass without a swap

// we're finished

// If we go through n passes we're

// finished

} while (i < n && switched);

}

Tracing the Cocktail Shaker Sort

25 13 4 29 14 1 31 18

13 4 25 14 1 29 18 31

13 1 4 25 14 18 29 31

1 4 13 14 18 25 29 31

1 4 13 14 18 25 29 31

Original

After Pass 1a

After Pass 1b

After Pass 2a

After Pass 2b

Final scan to 

confirm its in 

order


