CSC 344 – Algorithms and Complexity

Lecture #11 – Numerical Computation, Numerical Integration and the Fast Fourier Transform

Calculating e^x

- $e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^i}{i!} + \cdots$

- How do we write the function?
exp1()

double exp1(int x) {
 double sum = 0.0, term = 1.0;
 int i;

 for (i = 0; term >= sum/1.0e7; i++) {
 term = power(x, i)/fact(i);
 sum += term;
 }
 return sum;
}

• What wrong with this function?

exp3()

double exp3(int x) {
 double sum = 1.0, term = 1.0;
 int i;

 for (i = 1; term >= sum/1.0e7; i++) {
 term = term * x / (double)i;
 sum += term;
 }
 return sum;
}

• Is this faster?
Numerical Integration

• In general, a numerical integration is the approximation of a definite integration by a “weighted” sum of function values at discretized points within the interval of integration.

\[\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{N} w_i f(x_i) \]

where \(w_i \) is the weighted factor depending on the integration schemes used, and \(f(x_i) \) is the function value evaluated at the given point \(x_i \)

Rectangular Rule

Approximate the integration, \(\int_{a}^{b} f(x)dx \), that is the area under the curve by a series of rectangles as shown. The base of each of these rectangles is \(\Delta x= (b-a)/n \) and its height can be expressed as \(f(x_i^*) \) where \(x_i^* \) is the midpoint of each rectangle.

\[
\int_{a}^{b} f(x)dx = f(x_1^*)\Delta x + f(x_2^*)\Delta x + \ldots + f(x_n^*)\Delta x = \Delta x[f(x_1^*) + f(x_2^*) + \ldots + f(x_n^*)]
\]
rect()

// rect() - Uses the Rectangle's rule to find the
// definite integral of f(x). Takes the
// bounds as parameters
// Uses f(x) that appears below.
float rect(int lowBound, int hiBound){
 int numDivisions = 4;
 float x, increment, integral = 0.0;

 // Get the increment and the midpoint of
 // the first rectangle
 increment = (float)(hiBound-lowBound) / (float) numDivisions;
 x = lowBound + increment / 2.0;

 // Calculate f(x) and increment x to the
 // next value
 for (int i = 0; i < numDivisions; i++){
 integral = integral + f(x);
 x += increment;
 }

 // Multiply the sum by delta x
 integral = integral / (float) numDivisions;
 return (integral);
The rectangular rule can be made more accurate by using trapezoids to replace the rectangles as shown. A linear approximation of the function locally sometimes work much better than using the averaged value like the rectangular rule does.

\[
\int_a^b f(x) \, dx = \frac{\Delta x}{2} [f(a) + f(x_1)] + \frac{\Delta x}{2} [f(x_1) + f(x_2)] + \ldots + \frac{\Delta x}{2} [f(x_{n-1}) + f(b)]
\]

\[
= \Delta x \left[\frac{1}{2} f(a) + f(x_1) + \ldots + f(x_{n-1}) + \frac{1}{2} f(b) \right]
\]

trapezoid()

// trapezoid() - Uses the Trapezoid rule to find the definite integral of f(x) Takes the bounds as parameters Uses f(x) that appears below.

float trapezoid(int lowBound, int hiBound){
 int numDivisions = 4;
 float x, increment, integral = 0.0;

 increment = (float)(hiBound-lowBound) / (float) numDivisions;
 x = lowBound;

 // Add f(lowBound)/2 to the sum
 integral = 0.5*f(x);
Simpson’s Rule

Still, the more accurate integration formula can be achieved by approximating the local curve by a higher order function, such as a quadratic polynomial. This leads to the Simpson’s rule and the formula is given as:

\[
\int_{a}^{b} f(x)\,dx = \frac{\Delta x}{3} \left[f(a) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \ldots + 2f(x_{2m-2}) + 4f(x_{2m-1}) + f(b) \right]
\]

It is to be noted that the total number of subdivisions has to be an even number in order for the Simpson’s formula to work properly.
Simpson's Rule – A Quadratic Interpolation

\[f(x) \]
\[P(x) \]
\[a \quad m \quad b \]

\textbf{simpson.c}

```
#include <iostream>

using namespace std;

float f(float x);
float simpson(int lowBound, int hiBound);

// main() - Get inputted values for lower and upper bounds of integration, calls simpson() to use Simpson's rule for numerical integration and prints the result
```
int main(void) {
 int lowBound, hiBound;
 float integral;

 // Input the bounds
 cout << "Enter lower bound\t?"; cin >> lowBound;

 cout << "Enter upper bound\t?"; cin >> hiBound;

 // Calls simpson and prints the integral
 integral = simpson(lowBound, hiBound);
 cout << "Integral is...." << integral;
 return(0);
}

// simpson() - Uses Simpson's rule to find the definite integral of f(x)
// Takes the bounds as parameters
// Uses f(x) that appears below.
float simpson(int lowBound, int hiBound) {
 int numDivisions = 4;
 float x, increment, integral = 0.0;

 increment = (float)(hiBound - lowBound) / (float) numDivisions;
 x = lowBound;

 // Adds f(lowBound)
 integral = f(x);
// Increment x to the next value, calculate
// f(x)
// Add 4f(x) for even numbered values
// Add 2f(x) for odd numbered values
for (int i = 1; i < numDivisions; i++){
 x += increment;
 if (i % 2 == 1)
 integral = integral + 4.0*f(x);
 else
 integral = integral + 2.0*f(x);
}

// Add f(hiBound)
integral = integral + f(hiBound);

// Multiply the sum by delta x/3
integral = integral * increment/3.0;
return (integral);

// f() - The function being integrated
// numerically
float f(float x){
 return(x * x * x);
}
Examples

Integrate $f(x) = x^3$ between $x = 1$ and $x = 2$.

$$\int_1^2 x^3 \, dx = \frac{1}{4} x^4 \bigg|_1^2 = \frac{1}{4} (2^4 - 1^4) = 3.75$$

Using 4 subdivisions for the numerical integration: $\Delta x = \frac{2-1}{4} = 0.25$

Rectangular rule:

<table>
<thead>
<tr>
<th>i</th>
<th>x_i^*</th>
<th>$f(x_i^*)$</th>
<th>$\int_1^2 x^3 , dx$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.125</td>
<td>1.42</td>
<td>$\Delta x[f(1.125) + f(1.375) + f(1.625) + f(1.875)]$</td>
</tr>
<tr>
<td>2</td>
<td>1.375</td>
<td>2.60</td>
<td>$= 0.25(14.9) = 3.725$</td>
</tr>
<tr>
<td>3</td>
<td>1.625</td>
<td>4.29</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.875</td>
<td>6.59</td>
<td></td>
</tr>
</tbody>
</table>

Trapezoidal Rule

<table>
<thead>
<tr>
<th>i</th>
<th>x_i</th>
<th>$f(x_i)$</th>
<th>$\int_1^2 x^3 , dx$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\Delta x[f(1) + f(1.25) + f(1.5) + f(1.75) + \frac{1}{2} f(2)]$</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>1.95</td>
<td>$= 0.25(15.19) = 3.80$</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.75</td>
<td>5.36</td>
<td></td>
</tr>
</tbody>
</table>

Simpson’s Rule

$$\int_1^2 x^3 \, dx = \frac{\Delta x}{3} [f(1) + 4f(1.25) + 2f(1.5) + 4f(1.75) + f(2)]$$

$$= \frac{0.25}{3}(45) = 3.75 \Rightarrow \text{perfect estimation}$$
Transforms

- Transform:
 - In mathematics, a function that results when a given function is multiplied by a so-called kernel function, and the product is integrated between suitable limits. (Britannica)

\[G(y) = \int_{x_1}^{x_2} F(x)K(x, y)dx \]

Kernel

Fourier Transform

- Property of transforms:
 - They convert a function from one domain to another with no loss of information

- Fourier Transform:

\[F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \]

converts a function from the time (or spatial) domain to the frequency domain
Time Domain and Frequency Domain

- **Time Domain:**
 - Tells us how properties (air pressure in a sound function, for example) change over time:
 - Amplitude = 100
 - Frequency = number of cycles in one second = 200 Hz

- **Frequency domain:**
 - Tells us how properties (amplitudes) change over frequencies:

![Graph showing pressure over time](image1)

![Graph showing amplitude over frequency](image2)
Time Domain and Frequency Domain

• Example:
 – Human ears do not hear wave-like oscillations, but constant tone

• Often it is easier to work in the frequency domain

Time Domain and Frequency Domain

• In 1807, Jean Baptiste Joseph Fourier showed that any periodic signal could be represented by a series of sinusoidal functions
Time Domain and Frequency Domain

Fourier Transform

- Because of the property:

\[e^{i\omega t} = \cos \omega t + i \sin \omega t \]

where \(i = \sqrt{-1} \)

- Fourier Transform takes us to the frequency domain:

\[F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt \]

- **Euler's Formula**

- Scale factor for the Fourier Transform \(F(\omega) \); the original signal in the time domain; the "inverse Fourier transform".
Discrete Fourier Transform

• In practice, we often deal with discrete functions (digital signals, for example)
• Discrete version of the Fourier Transform is much more useful in computer science:
 \[W \equiv e^{2\pi i/N} \]
 \[F_n = \sum_{k=0}^{N-1} W^{nk} f_k, \quad n = 0, 1, 2, \ldots N-1 \]
• Calculating all the values of the vector F requires \(O(n^2) \) time complexity

Effect of Sampling in Time and Frequency

• By sampling in time, we get a periodic spectrum with the sampling frequency \(f_s \). The approximation of a Fourier transform by a DFT is reasonable only if the frequency components of \(x(t) \) are concentrated on a smaller range than the Nyquist frequency \(f_s/2 \)
Dividing the Transform in 2

• $F_k = \sum_{j=0}^{N-1} e^{2\pi i kj/N} f_j$
• $= \frac{N}{2} \sum_{j=0}^{N-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N-1} e^{2\pi i k(2j+1)/N} f_{2j+1}$
• $= \frac{N}{2} \sum_{j=0}^{N-1} e^{2\pi i kj/N} f_j + W^k \sum_{j=0}^{N-1} e^{2\pi i kj/N} f_{2j+1}$
• $= F_k^e + W^k F_k^o$

This can be used recursively.

As We Continue To Divide…

• This works best if $N=2^n$
• We re-order the elements in the array.
 – Let $e = 0$ and $o = 1$
 – We reverse the bits
Now, we combine them..

- We start with our Fourier transforms of length one and we perform \(\log_2 N \) combinations.

The Fast Fourier Transform

```c
void four1(double data[], int nn, isign) {
    int i, istep, j, m, mmax, n;
    double   tempi, tempr;
    double   theta, wi, wpi, wpr, wr, wtemp;

    n = 2 * nn;
    j = i
```
// Do the bit reversal
for (i = 1; i <= n; i+=2) {
 if (j > i) {
 // Swap 2 complex values
 tempr = data[j];
 tempi = data[j+1];
 data[j] = data[i];
 data[j+1] = data[i+1];
 data[i] = tempr;
 data[i+1] = tempi;
 }
 m = n/2;
 while (m >= 2 && j > m) {
 j = j - m;
 m = m / 2;
 }
}

j = j + m;

// Here is where we combine terms
// outer loop is performed log2 nn times
while (n > mmax) {
 istep = 2 * mmax
 //Initialize trig recurrence
 theta = 2.0 * 3.141592653589/(isign*mmax);
 wpr = 2 * pow(sin(0.5*theta), 2);
 wpi = sin(theta);
 wr = 1.0;
 wi = 0.0;
// First of two nested loops
for (m = 1; m <= mmax; m += 2) {
 //Second of two nested loops
 for (i = m; i <= n; i += istep) {
 // We combine them here
 j = i + mmax;
 tempr = wr* data[j] - wi *data[j+1];
 tempi = wr* data[j+1] + wi *data[j];
 data[j] = data[i] _ tempr;
 data[j+1] = data[i+1] - tempi;
 data[i] = data[i] + tempr;
 data[i+1] = data[i+1] + tempi;
 }
 // Trig recurrence
 wtemp = wr;
 wr = wr*wpr - wi*wpi + wr;
 wi = wi*wpi + wtemp*wpi + wi;
 max = istep;
}
}
Applications

• In image processing:
 – Instead of time domain: spatial domain (normal image space)
 – frequency domain: space in which each image value at image position F represents the amount that the intensity values in image I vary over a specific distance related to F

Applications: Frequency Domain In Images

• If there is value 20 at the point that represents the frequency 0.1 (or 1 period every 10 pixels). This means that in the corresponding spatial domain image I the intensity values vary from dark to light and back to dark over a distance of 10 pixels, and that the contrast between the lightest and darkest is 40 gray levels
Applications: Frequency Domain In Images

- *Spatial frequency* of an image refers to the rate at which the pixel intensities change.
- In picture on right:
 - High frequencies:
 - Near center
 - Low frequencies:
 - Corners

Applications: Image Filtering

![Image Filtering Diagram](image_url)