CSC 344 – Algorithms and Complexity

Lecture #1 – Review of Mathematical Induction

Proof by Mathematical Induction

• Many results in mathematics are claimed true for every positive integer.
• Any of these results could be checked for a specific value of n (e.g., 1, 2, 3, ..) but it would be impossible to check every possible case. For example, let S_n represent the statement that the sum of the first n positive integers is
Proof by Mathematical Induction, (continued)

• Let \(S_n \) represent the statement that the sum of the first \(n \) positive integers is \(n(n+1)/2 \)

\[
S_n : \quad 1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}
\]

If \(n = 1 \), then \(S_1 \) is

\[
1 = \frac{1(1 + 1)}{2}, \quad \text{which is true.}
\]

If \(n = 2 \), then \(S_2 \) is

\[
1 + 2 = \frac{2(2 + 1)}{2}, \quad \text{which is true.}
\]

If \(n = 3 \), then \(S_3 \) is

\[
1 + 2 + 3 = \frac{3(3 + 1)}{2}, \quad \text{which is true.}
\]

If \(n = 4 \), then \(S_4 \) is

\[
1 + 2 + 3 + 4 = \frac{4(4 + 1)}{2}, \quad \text{which is true.}
\]
Proof by Mathematical Induction, (continued)

- Continuing in this way for any amount of time would still not prove that S_n is true for every positive integer value of n.
- To prove that such statements are true for every positive integer value of n, the principle shown on the following slide is often used.

Principle of Mathematical Induction

- Let S_n be a statement concerning the positive integer n. Suppose that
 - 1. S_1 is true;
 - 2. for any positive integer k, $k \leq n$, if S_k is true, then S_{k+1} is also true.
- Then S_n is true for every positive integer value of $n.$
Principle of Mathematical Induction (continued)

• By assumption (1), the statement is true when \(n = 1 \).

• By assumption (2), the fact that the statement is true for \(n = 1 \) implies that it is true for \(n = 1 + 1 = 2 \).

• Using (2) again, the statement is thus true for \(2 + 1 = 3 \), for \(3 + 1 = 4 \), for \(4 + 1 = 5 \), etc.

• Continuing in this way shows that the statement must be true for every positive integer.

How Does Mathematical Induction Work?
How To Prove by Mathematical Induction

• Step 1
 – Prove that the statement is true for $n = 1$.

• Step 2
 – Show that, for any positive integer k, $k \leq n$, if S_k is true, then $S_{k + 1}$ is also true.

Example 1 - Proving An Equality Statement

Let S_n represent the statement

$$1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}.$$

Prove that S_n is true for every positive integer n.

Solution

Step 1 Show that the statement is true when $n = 1$. If $n = 1$, S_1 becomes

$$1 = \frac{1(1+1)}{2},$$

which is true.
Example 1 - Proving an Equality Statement

Step 2 Show that S_k implies $S_{k + 1}$, where S_k is the statement

$$1 + 2 + 3 + \cdots + k = \frac{k(k + 1)}{2},$$

and $S_{k + 1}$ is the statement

$$1 + 2 + 3 + \cdots + k + (k + 1) = \frac{(k + 1)((k + 1) + 1)}{2}.$$

Example 1 - Proving an Equality Statement

Step 2 Start with S_k and assume it is a true statement.

$$1 + 2 + 3 + \cdots + k = \frac{k(k + 1)}{2},$$

Add $k + 1$ to both sides of this equation to obtain $S_{k + 1}$.

$$1 + 2 + 3 + \cdots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1)$$
Example 1 - Proving An Equality Statement

Step 2

\[1 + 2 + 3 + \cdots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1) \]

\[= (k + 1)\left(\frac{k}{2} + 1\right) \quad \text{Factor out } k + 1. \]

\[= (k + 1)\left(\frac{k + 2}{2}\right) \quad \text{Add inside the parentheses.} \]

\[= \frac{(k + 1)[(k + 1) + 1]}{2} \quad \text{Multiply; } k + 2 = (k + 1) + 1. \]

Example 1 - Proving An Equality Statement

- This final result is the statement for \(n = k + 1 \); it has been shown that if \(S_k \) is true, then \(S_{k+1} \) is also true.

- The two steps required for a proof by mathematical induction have been completed, so the statement \(S_n \) is true for every positive integer value of \(n \).
Prove By Mathematical Induction

• Please note that the left side of the statement S_n always includes all the terms up to the nth term, as well as the nth term.

Example 2 - Proving An Inequality Statement

Prove: If x is a real number between 0 and 1, then for every positive integer n,

$$0 < x^n < 1.$$

Solution

Step 1 Here S_1 is the statement

if $0 < x < 1$, then $0 < x^1 < 1$,

which is true.
Example 2 - Proving An Inequality Statement

Step 2 Here S_k is the statement

if $0 < x < 1$, then $0 < x^k < 1$.

To show that this implies that S_{k+1} is true, multiply all three parts of $0 < x^k < 1$ by x to get

$$x \times 0 < x \times x^k < x \times 1$$

Example 2 - Proving An Inequality Statement

Step 2 (Here the fact that $0 < x$ is used.) Simplify to obtain

$$0 < x^{k+1} < x.$$

Since $x < 1$,

$$0 < x^{k+1} < x < 1$$

and thus

$$0 < x^{k+1} < 1.$$

This work shows that if S_k is true, then S_{k+1} is true. Since both steps for a proof by mathematical induction have been completed, the given statement is true for every positive integer n.

Generalized Principle of Mathematical Induction

• Some statements S_n are not true for the first few values of n, but are true for all values of n that are greater than or equal to some fixed integer j.

• The following slightly generalized form of the principle of mathematical induction takes care of these cases.

Generalized Principle of Mathematical Induction

Let S_n be a statement concerning the positive integer n. Let j be a fixed positive integer. Suppose that

– **Step 1** S_j is true;

– **Step 2** for any positive integer k, $k \geq j$, S_k implies S_{k+1}.

– Then S_n is true for all positive integers n, where $n \geq j$.
Example 3 - Using The Generalized Principle

Let \(S_n \) represent the statement \(2^n > 2n + 1 \). Show that \(S_n \) is true for all values of \(n \) such that \(n \geq 3 \).

Solution

Step 1 Show that \(S_n \) is true for \(n = 3 \). If \(n = 3 \), then \(S_3 \) is

\[2^3 > 2 \times 3 + 1 \]

or

\[8 > 7. \]

Thus, \(S_3 \) is true.

Example 3 - Using The Generalized Principle

Let \(S_n \) represent the statement \(2^n > 2n + 1 \). Show that \(S_n \) is true for all values of \(n \) such that \(n \geq 3 \).

Solution

Step 2 Now show that \(S_k \) implies \(S_{k+1} \), where \(k \geq 3 \), and where

\[S_k \text{ is } 2^k > 2k + 1, \]

and

\[S_{k+1} \text{ is } 2^{k+1} > 2(k + 1) + 1. \]
Example 3 - Using The Generalized Principle

Step 2
Multiply both sides of $2^k > 2k + 1$ by 2, obtaining

$$2 \times 2^k > 2(2k + 1)$$

$$2^{k+1} > 4k + 2.$$

Rewrite $4k + 2$ as $2k + 2 + 2k = 2(k + 1) + 2k$.

$$2^{k+1} > 2(k + 1) + 2k \quad (1)$$

Since k is a positive integer greater than 3,

$$2k > 1. \quad (2)$$

Example 3 - Using The Generalized Principle

Step 2
Adding $2(k + 1)$ to both sides of inequality (2) gives

$$2(k + 1) + 2k > 2(k + 1) + 1. \quad (3)$$

From inequalities (1) and (3),

$$2^{k+1} > 2(k + 1) + 2k > 2(k + 1) + 1,$$

or

$$2^{k+1} > 2(k + 1) + 1, \quad \text{as required.}$$
Example 3 - Using The Generalized Principle

Step 2

Thus, S_k implies S_{k+1}, and this, together with the fact that S_3 is true, shows that S_n is true for every positive integer value of n greater than or equal to 3.

Example 4 - Sum of Odd Integers

- Proposition: $1 + 3 + \ldots + (2n-1) = n^2$
 for all integers $n \geq 1$.
- Proof (by induction):
 1. Basis step:
 The statement is true for $n=1$: $1=1^2$.
 2. Inductive step:
 Assume the statement is true for some $k \geq 1$
 (inductive hypothesis)
 show that it is true for $k+1$.

Example 4 - Sum of Odd Integers (continued)

The statement is true for k:

$$1+3+\ldots+(2k-1) = k^2 \quad (1)$$

We need to show it for $k+1$:

$$1+3+\ldots+(2(k+1)-1) = (k+1)^2 \quad (2)$$

Showing (2):

$$1+3+\ldots+(2(k+1)-1) = 1+3+\ldots+(2k+1)$$

$$= 1+3+\ldots+(2k-1)+(2k+1)$$

$$= k^2+(2k+1)$$

$$= (k+1)^2$$

We proved the basis and inductive steps, so we conclude that the given statement true.

Example 5 - The Geometric Series

- Any sum of the form: $1 + r + r^2 + r^3 + \ldots + r^n$ is called a **Geometric Series**.
- Thus, $1 + 2 + 4 + 8 + 16 + \ldots + 2^n$ is a geometric series.
- To find the sum of this series, consider:

 $$S = 1 + r + r^2 + r^3 + \ldots + r^n.$$

 So

 $$-rS = -r - r^2 - r^3 - \ldots - r^{n+1}$$

 and

 $$(1-r)S = 1 - r^{n+1}$$

- Therefore, $1 + r + r^2 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r}$
Proof of the Geometric Series

• Prove: $1 + r + r^2 + ... + r^n = \left[r^{(n+1)} - 1 \right] / (r - 1)$
• Proof: (by Induction)
• Basis: Show true for $n = 0$:
 \[
 \begin{align*}
 \text{LHS} &= 1 \\
 \text{RHS} &= \frac{r^{(0+1)} - 1}{r - 1} = \frac{r - 1}{r - 1} = 1
 \end{align*}
 \]
• Therefore LHS = RHS

Proof of the Geometric Series (continued)

• Induction:
 Assume $1 + r + r^2 + ... + r^k = \frac{r^{k+1} - 1}{r - 1}$
• Show:
 $1 + r + r^2 + ... + r^k + r^{k+1} = \frac{r^{k+2} - 1}{r - 1}$
• Now:
 $1 + r + r^2 + ... + r^k + r^{k+1}
 = \frac{r^{k+1} - 1 + r^{k+1}}{r - 1}$
Proof of the Geometric Series (continued)

\[
1 + r + r^2 + \ldots + r^k + r^{k+1} = \frac{r^{k+1} - 1}{r-1} + r^{k+1} \\
= \frac{r^{k+1} - 1 + (r-1)r^{k+1}}{r-1} \\
= \frac{r^{k+1} - 1 + r^{k+1} - r^{k+1}}{r-1} \\
= \frac{r^{k+2} - 1}{r-1}
\]

QED

Divisibility Property

- Proposition: For any integer \(n \geq 1 \),
 \[7^n - 2^n \text{ is divisible by 5.} \] \((P(n))\)
- Proof (by induction):
 1. Basis:
 The statement is true for \(n = 1 \):
 \[7^1 - 2^1 = 7 - 2 = 5 \text{ is divisible by 5.} \]
Divisibility Property (continued)

• We are given that

\(P(k) : \)

\[7^k - 2^k \text{ is divisible by } 5. \quad (1) \]

Then

\[7^k - 2^k = 5a \quad \text{for some } a \in \mathbb{Z}. \]

(by definition) \quad (2)

Divisibility Property (continued)

• We need to show:

\(P(k+1): \)

\[7^{k+1} - 2^{k+1} \text{ is divisible by } 5. \]

\[7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k = 5 \cdot 7^k + 2 \cdot 2^k \]

\[= 5 \cdot 7^k + 2 \cdot (7^k - 2^k) = 5 \cdot 7^k + 2 \cdot 5a \]

(by (2))

\[= 5 \cdot (7^k + 2a) \text{ which is divisible by } 5. \]

(by def.)

Thus, \(P(n) \) is true by induction.
Two Proofs to Try

\[\sum_{i=1}^{n} i^3 = \frac{n^2(n + 1)^2}{4} \]

\[\sum_{i=0}^{n} (2i + 1)^2 = \frac{(n + 1)(2n + 1)(2n + 3)}{3} \]