What Is Recursion?

- Recursion - defining the solution of a problem in terms of itself except for one or more primitive cases.
Is Factorial Recursive?

- The factorial function is defined as:
 \[n! = n \cdot (n-1) \cdot (n-2) \cdots 1 \]
 or
 \[n! = \prod_{i=1}^{n} i \]

- The recursive definition is:
 \[n! = n (n-1)! \quad \text{for } n > 0 \]
 \[n! = 1 \quad \text{for } n = 0 \]

Factorial function

- We can write a factorial function:

```c
float factorial (int n)
{
    float prod;
    int n;

    x = n;
    prod = 1;
    while (x != 0)
        prod *= x--;
    return(prod);
}
```
Factorial Function (continued)

- This is **iterative**; it performs a calculation until a certain condition is met.

- By recursion:
 1. \(5! = 5 \cdot 4!\)
 2. \(4! = 4 \cdot 3!\)
 3. \(3! = 3 \cdot 2!\)
 4. \(2! = 2 \cdot 1!\)
 5. \(1! = 1 \cdot 0!\)
 6. \(0! \equiv 1\)

\[
\begin{align*}
(1) & \quad 5! = 5 \cdot 4! & (5') & \quad 1! = 1 \cdot 0! = 1 \cdot 1 = 1 \\
(2) & \quad 4! = 4 \cdot 3! & (4') & \quad 2! = 2 \cdot 1! = 2 \cdot 1 = 2 \\
(3) & \quad 3! = 3 \cdot 2! & (3') & \quad 3! = 3 \cdot 2! = 3 \cdot 2 = 6 \\
(4) & \quad 2! = 2 \cdot 1! & (2') & \quad 4! = 4 \cdot 3! = 4 \cdot 4 = 24 \\
(5) & \quad 1! = 1 \cdot 0! & (1') & \quad 5! = 5 \cdot 4! = 5 \cdot 24 = 120 \\
(6) & \quad 0! \equiv 1
\end{align*}
\]

Other Examples of Recursion

- **Multiplication** - \(a \cdot b\)

 \[
 \begin{align*}
 a \cdot b &= a \cdot (b-1) + a \quad \text{if } b > 1 \\
 a \cdot 1 &= a \quad \text{if } b = 1
 \end{align*}
 \]

- **Fibonacci Numbers** - \(0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots\)

 \[
 \begin{align*}
 \text{Fib}(n) &= \text{Fib}(n-1) + \text{Fib}(n-2) \quad \text{if } n > 1 \\
 \text{Fib}(n) &= n \quad \text{if } n = 1, n = 0
 \end{align*}
 \]

This is doubly recursive = 2 recursive call in the definition
Binary Search

- A binary search is a fairly quick way to search for data in a *presorted* data, sorted by *key*.

- **Algorithm**

 Initialize low and high

 If low > high THEN binsrch = 0

 ELSE BEGIN

 mid = (low + high) / 2

 IF x = a[mid] THEN binsrch = mid

 ELSE IF x < a[mid]

 THEN search from low to mid-1

 ELSE search from mid+1 to high

 END

Binary Search (continued)

- Given numbers stored in an array sorted in *ascending* order, search for 25:

<table>
<thead>
<tr>
<th>i</th>
<th>x[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
</tr>
</tbody>
</table>

Each pass:

<table>
<thead>
<tr>
<th>Pass #</th>
<th>Low</th>
<th>High</th>
<th>Mid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Found it!
Tracing the Recursive Factorial

- Writing a recursive factorial function:
  ```c
  float fact(int n)
  {
    int x;
    float y;
    if (n == 0)
      return(1);
    x = n - 1;
    y = fact(x);
    return(n*y);
  }
  ```

Tracing Recursive Factorial (continued)

Let’s trace `cout << fact(4);`

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Initially

- fact(4)
if (n==0) return(1)
y = fact(0)
y = fact(1)
y = fact(2)
y = fact(3)
Recursive Multiplication

- We can also write a recursive multiplication function:

\[
\text{int mult(int a, int b)\
\{\
 \text{if (b == 1)}\
 \quad \text{return(a);}\
 \text{return(mult(a, b-1) + a);}\
\}}\
\]

or

\[
\text{int mult(int a, int b)\
\{\
 \text{return(b == 1? a : mult(a, b-1) + a);}\
\}}\
\]

Rewriting \textit{fact}

- We can rewrite \textit{fact} as

\[
\text{float fact(int n)\
\{\
 \text{return(n == 0? 1 : n * fact(n-1));}\
\}}\
\]

- What about \textit{fact(-1)}? We want to catch the error and our current function does not.
Rewriting `fact` (continued)

```c
float fact(int n)
{
    int x;
    if (n < 0){
        cerr << "Negative parameter in"
             << " factorial function\n";
        exit(1);
    }
    return ((n == 0)? 1 : n * fact(n-1));
}
```

Writing the Fibonacci Function

- \(F_n = F_{n-1} + F_{n-2} \) for \(n > 1 \)
- \(F_0 = 0 \); \(F_1 = 1 \)

```c
int fib(int n)
{
    int x, y;
    if (n >= 1)
        return(n);
    x = fib(n-1);
    y = fib(n-2)
    return(x + y);
}
```
Tracing Recursive Fibonacci (continued)

Let's trace `cout << fib(6);`

```
<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>*</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>*</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 *</td>
<td></td>
</tr>
<tr>
<td>3 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 * *</td>
<td></td>
</tr>
<tr>
<td>2 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>3 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 *</td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 *</td>
<td></td>
</tr>
<tr>
<td>3 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 *</td>
<td></td>
</tr>
<tr>
<td>4 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 * *</td>
<td></td>
</tr>
<tr>
<td>4 2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 *</td>
<td></td>
</tr>
<tr>
<td>4 2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 0</td>
<td></td>
</tr>
<tr>
<td>4 2 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Writing the Binary Search

- We invoke the binary search by writing:

  ```c
  i = binsrch(a, x);
  ```

 It will check the array `a` for an integer `x`.

// binsrch() - The classic binary search algorithm
// written recursively. It requires
// that the array, search key and bounds
// of the subarray being searched be
// passed as parameters.
int binsrch(int a[], int x, int low, int high)
{
 int mid;
if (low > high)
 return(-1); // Not in the array
mid = (low + high)/2;
return((x == a[mid])? mid :
 (x < a[mid])?
 //Check the lower half
 binsrch(a, x, low, mid-1):
 //Check the upper half
 binsrch(a, x, mid+1, high));

Revising the Binary Search

- Passing a and x should not be necessary since they do change from one recursive call to the next. Let’s make them global:
 int a[ArraySize];
 int x;
and it’s called by
 i = binsrch(0, n-1);
Revised Binary Search

```c
int binsrch(int low, int high)
{
    int mid;

    if (low > high)
        return(-1); // Not in the array

    mid = (low + high)/2;
    return((x == a[mid])? mid :
        (x < a[mid])?
            //Check the lower half
            binsrch(low, mid-1):
            //Check the upper half
            binsrch(mid+1, high));
}
```

Recursive Chains

- A recursive function does not have to call itself directly; it can call another function which in turn called the first function:
 - `a(...) b(...)`
    ```c
    {
        {
            ....  ....
            b(...) ;  a(...) ;
        }
    }
    ```
 - This is called a **recursive chain**.
Recursive Definition of Algebraic Expression

- An example of a recursive chain might be an algebraic expression where:
 - An expression is a term followed by a plus sign followed by term or a single term.
 - A term is a factor followed by a asterisk followed by factor or a single factor.
 - A factor is either a letter or an expression enclosed in parentheses.

The `expr` Program

```c
#include <iostream.h>
#include <string.h>
#include <ctype.h>
enum boolean {false, true};
const int MaxStringSize = 100;

int getsymb(char str[], int length, int &pos);
void readstr(char *instring, int &inlength);
int expr(char str[], int length, int &pos);
int term(char str[], int length, int &pos);
int factor(char str[], int length, int &pos);
```
// main() - This program allows a user to test whether
// an expression is valid or invalid. All
// variables and constants are restricted to
// one character.
int main(void)
{
 char str[MaxStringLength];
 int length, pos;

 readstr(str, length);
 pos = 0;

 if (expr(str, length, pos) && pos >= length)
 cout << "Valid expression" << endl;
 else
 cout << "Invalid expression" << endl;

 // The condition can fail for one (or both) of two
 // reason. If expr(str, length, pos) == false
 // then there is no valid expression beginning at
 // pos. If pos < length there may be a valid
 // expression starting at pos but it does occupy
 // the entire string.
 return(0);
}
// expr() - Returns true if str is a valid expression
// Returns false if str is not.
int expr(char str[], int length, int &pos)
{
 // Look for a term
 if (term(str, length, pos) == false)
 return(false);

 // We have found a term - now look at the
 // next symbol

 if (getsym(str, length, pos) != '+') {
 // We have found the longest expression
 // (a single term). Reposition pos so it
 // refers to the last position of the
 // expression
 --pos;
 return(true);
 }

 // At this point, we have found a term and a
 // plus sign. We must look for another term
 return(term(str, length, pos));
}
// term() - Returns true if str is a valid term
// Returns false is str is not.
int term(char str[], int length, int &pos)
{
 if (factor(str, length, pos) == false)
 return(false);

 if (getsymb(str, length, pos) != '*') {
 --pos;
 return(true);
 }
 return(factor(str, length, pos));
}

// factor() - Returns true if str is a valid factor
// Returns false is str is not.
int factor(char str[], int length, int &pos)
{
 int c;

 if ((c = getsymb(str, length, pos)) != '(')
 // The factor is not inside parentheses
 return(isalpha(c));

 // Examine parenthetic terms
 return(expr(str, length, pos) &
 && getsymb(str, length, pos) == ')');
}
//getsymb() - Returns the next character in the string str
int getsymb(char str[], int length, int &pos)
{
 char c;
 if (pos < length)
 c = str[pos];
 else
 // Beyond the end of the line of text
 c = ' ';
 pos++;
 return(c);
}

//readstr() - Reads a line of text that is assumed to be
void readstr(char *instring, int &inlength)
{
 cin >> instring;
 inlength = strlen(instring);
}
Towers of Hanoi

The Tower of Hanoi gives us an example of a problem that can only be solved by recursion:
1. Three pegs with n disks - the smallest disk is on top and the largest is on the bottom.
2. A disk cannot be placed on top of a smaller disk
3. Only one disk can be moved at a time.

The solution is:
1. Assume n-1 disks are moved onto the auxiliary disk
2. Move bottom disk to destination peg.
3. Move n-1 disks to destination peg.
4. If n=1, move the only disk to the destination peg.

Example - Towers of Hanoi For 3 Disks

1.
2.
#include <iostream.h>

void towers (int n, char frompeg, char topeg, char auxpeg);

// main() - A driver for the towers function
int main(void)
{
 int n;

 cout << "How many disks on the Towers of" << " Hanoi ?";
 cin >> n;
 towers(n, 'A', 'C', 'B');
 return(0);
}
/** towers() - A recursive solution to the Tower of Hanoi Problem **

```cpp
void towers (int n, char frompeg, char topeg, char auxpeg) {
    // If only one disk, make the move and return
    if (n==1) {
        cout << "Move disk 1 from peg " << frompeg << " to peg " << topeg << endl;
        return;
    }

    // Move top n-1 disks from A to B using C as auxiliary
    towers(n-1, frompeg, auxpeg, topeg);

    // Move remaining disk from A to C
    cout << "Move disk " << n << " from peg " << frompeg << " to peg " << topeg << endl;

    // Move n-1 disks from B to CB using A as auxiliary
    towers(n-1, auxpeg, topeg, frompeg);
}
```
Simulating Recursion

• Being able to simulate recursion is important because:
 – Many programming languages do not implement it, e.g., FORTRAN, COBOL, assembler, etc.
 – It teaches us the implementation of recursions and its pitfalls.
 – Recursion is often more expensive computationally than we find we can afford.
• In order to simulate recursion, we must understand how function calls and function returns work.

Calling a function

Calling a function consists of 3 actions:
 – Passing arguments (or parameters)
 A copy of the parameter is made locally within the function and any changes to the parameter are made to the local copy.
 – Allocating and initializing local variables
 These local variables include those declared directly in the functions and any temporary variables that must be created during execution e.g., if we add \(x + y + z \), we need a place to store \(x + y \) temporarily.
 – Transferring control to the function
 Save the return address and transfer control to the function
Returning From a Function Call

Returning from a function call consists of the following steps:

– The return address is retrieved and saved in a safe place (i.e., outside the function’s data area).
– The function’s data area is freed.
– The function returns control by branching to the return address.
Implementing Recursive Functions

typedef struct {
 int param;
 int x;
 long y;
 short retaddr;
} dataarea;

class stack {
public:
 boolean empty(void);
 dataarea pop(void);
 void push(dataarea x);
 dataarea stacktop(void);
 boolean popandtest(dataarea &x); //Tests before popping
 boolean pushandtest(dataarea x); stack(void); //Default constructor
 stack(dataarea x); //Init. constructor
private:
 int top;
 dataarea item[StackSize];
};
Simfact function

int simfact(int n)
{
 dataarea currarea;
 stack s;
 short i;
 long result;

 // Initialize a dummy data area
 currarea.param = 0;
 currarea.x = 0;
 currarea.y = 0;
 currarea.retaddr = 0;

 // Push the data data area onto the stack
 s.push(currarea);

 // Set the parametetr and the return address
 // of the current data area to their proper
 // values
 currarea.param = n;
 currarea.retaddr = 1;
// This is the beginning of the simulated factorial routine
start:
if (currarea.param == 0) {
 // Simulation of return(1)
 result = 1;
 i = currarea.retaddr;
 currarea = s.pop();
 switch(i) {
 case 1: goto label1;
 case 2: goto label2;
 }
}
currarea.x = currarea.param - 1;
// Simulation of recursive call to fact
s.push(currarea);
currarea.param = currarea.x;
currarea.retaddr = 2;
goto start;

// This is the point to which we return from the recursive call.
// Set currarea.y to the returned value
label2:
currarea.y = result;
// Simulation of return(n*y);
result = currarea.param * currarea.y;
i = currarea.retaddr;
currarea = s.pop();
switch(i) {
 case 1: goto label1;
 case 2: goto label2;
}

// At this point we return to the main routine
label1:
 return(result);
}
Improving \textit{simfact}

- Do we need to stack all the local variables in this routine?
 - \texttt{n} changes and is used again after returning from a recursive call.
 - \texttt{x} is never used again after the recursive call
 - \texttt{y} is not used until after we return.
 - We can avoid saving the return address if we use stack underflow as a criterion for exiting the routine.

\textbf{\textit{simfact} with a limited stack}

```c
int simfact(int n)
{
    stack s;  // s stacks only the current
              // parameter
    short und;
    long result, y;
    int currparam, x;

    // Set the parameter and the return address
    // of the current data area to their proper
    // values
    currparam = n;
```
// This is the beginning of the simulated factorial routine
start:
if (currparam == 0) {
 // Simulation of return(1)
 result = 1;
 und = s.popandtest(currparam);
 switch(und) {
 case true: goto label1;
 case false: goto label2;
 }
}

// currparam != 0
x = currparam - 1;
// Simulation of recursive call to fact
s.push(currparam);
currparam = x;
goto start;

// This is the point to which we return from the recursive call.
// Set y to the returned value
label2:
y = result;
// Simulation of return(n*y);
result = currparam * y;
und = s.popandtest(currparam);
switch(und) {
 case true: goto label1;
 case false: goto label2;
}

// At this point we return to the main routine
label1:
return(result);
Eliminating *goto*s

• Goto is a bad programming form because it obscures the meaning and intent of the algorithm.
• We will combine the two references to *popandtest* and *switch*(und) into one.

```c
int simfact(int n)
{
    stack s;
    short und;
    long y;
    int x;

    x = n;
    // This is the beginning of the simulated factorial routine
    start:
    if (x == 0)
        y = 1;
    else {
        s.push(x--);
        goto start;
    }
}
```
label1:
 und=s.popandtest(x);
 if (und == true)
 return(y);

label2:
 y *= x;
 goto label1;
}

Eliminating the **gotos**

- We recognize that there are really two loops:
 - one loop which generates additional function call (simulated by pushing the parameter on the stack)
 - another loop where we return from recursive calls (simulated by popping the parameter off the stack).
```c
int simfact(int n) {
    stack s;
    short und;
    long y;
    int x;

    x = n;

    // This is the beginning of the simulated factorial routine
    start:
    while (x != 0) {
        s.push(x--);
        y = 1;
        und = s.popandtest(x);
        label1:
        while (und == false) {
            y *= x;
            und = s.popandtest(x);
        }
        return(y);
    }
}
```
Finally…after eliminating the unnecessary pushes and pops...

```c
int simfact(int n)
{
    long y;
    int x;

    for  (y = x= 1;  x <= n;  x++)
        y *= x;

    return(y);
}
```