Software II: Principles of Programming Languages

The FORTH Programming Language

What is FORTH

- FORTH is a threaded interpreted language developed by Charles Moore.
 - FORTH stores all symbols in a dictionary.
 - When running a program the interpreter looks up these in a dictionary, finds its address and executes the code stored at that address.
 - FORTH programs run very quickly and experienced FORTH programmers claim that their programs can be developed as fast as in higher-level languages.
Expressions in FORTH

• FORTH uses a stack to manage data.
• Expressions in FORTH are all written in postfix notation:
 3 4 +
 3 4 * 5 +
 3 4 * 5 6 * +
• A number is printed using the period:
 3 4 + . 7 ok
 3 4 * 5 + . 17 ok
 3 4 * 5 6 * + . 42 ok

Stack Management in FORTH

• FORTH provides several words for basic stack management:
 – swap – switches the two top items on the stack
 – dup – places a copy of the top item on the stack
 – rot – rotates the top three items on the stack so that the bottommost of the three items is now on top.
 – drop – removes the top item from the stack
• Examples:
 3 4 swap . . 3 4 ok
 3 4 5 rot . . . 3 5 4 ok
 3 4 dup . . . 4 4 3 ok
 3 4 over . 3 ok..
Defining A New Word

• Definitions begin with a colon and then the name of the new word:
 : 2times dup + . ;
• A defined word can be used immediately afterward:
 4 2times 8 ok

Displaying Character Data in FORTH

• You can print a character string by writing .” to begin a string and “ at the end inside a definition:
 : hithere ." Hello, world " ; ok
 hithere Hello, world ok
• You can print a character using the emit word if you first place the ASCII value on the stack:
 : hithere ." Hello, world " ; ok
 42 emit * ok
Variables in FORTH

• You can declare a variable in FORTH by writing:
 \texttt{variable amount ok}
• You can save integer (or single character) data here by writing:
 \texttt{42 amount ! ok}
• You can retrieve it by writing:
 \texttt{amount @ . 42 ok}

Constants in FORTH

• Constants can be declared by writing:
 \texttt{14 constant idno ok}
• When you invoke the name, FORTH fetches it value:
 \texttt{idno . 14 ok}
Loops in FORTH

• Counting loops can be created in FORTH:
 : kilogreet 10 1 do ." hi, there " Cr loop ; ok
• You can use i to get the loop’s index:
 : counttoten 10 1 do i . loop ; ok
 counttoten 1 2 3 4 5 6 7 8 9 ok
• Conditional loop can be created in FORTH:
 : countdown begin 2 / dup . dup 1 < until ; ok
 4 countdown 2 1 0 ok.
 8 countdown 4 2 1 0 ok..

Declaring an Array

• You can declare an array in FORTH by writing:
 variable myarray 20 allot ok
• This sets aside 20 bytes of storage (using Win32Forth, every integer is 4 bytes in size.)
Using an Array Element

- You can assign myarray[3] the value 25 by writing:
 \[25 \text{ myarray 3 4 } * + ! \]
- You can retrieve it by writing:
 \[\text{myarray 3 4 } * @ . \ 25 \ \text{ok} \]
- We can define a word that gives us the array element’s address by writing:
 \[: \text{addrxi 4 } * + ; \]

savethem and fetchthem

: savethem 4 0 do myarray i addrxi ! loop ; ok
8 6 4 2 savethem ok
: fetchthem 4 0 do myarray i addrxi @ . loop ; ok
fetchthem 2 4 6 8 ok
Conditionals

• An IF-THEN construction:
 : posmsg 0 > if ." positive " then ; ok
 43 posmsg positive ok

• An IF-THEN-ELSE construction:
 : messg 0 > if ." positive " else ." negative " then ; ok
 45 messg positive ok
 -45 messg negative ok

Calculating an average

: average dup numvalues ! 1 do + loop
 numvalues @ / . ;
Floating Point Values

• The average before will:
 \[5 \div 3 \times .1 \text{ ok} \]
• To convert to float, we must first convert to double:
 \[5 \text{ S>D D>F 3 S>D D>F F/ F} \]
• Float values are placed on a separate stack so they do not interfere with integer values on the integer stack.

Float Operations

All the float operations begin with F:
• Arithmetic operations: \(F+ \ F- \ F* \ F/ \)
• Variables and Constants
 \(\text{FVARIABLE FCONSTANT F! F@} \)
• Comparisons \(F> \ F< \ F= \)
• Basic functions: \(\text{FSQRT FMIN FMAX FSIN FCOS FABS} \)
• Stack Manipulation \(\text{FSWAP FDUP FROT FDROP} \)
Converting Back to Integer

- Converting back to integer is the reverse:
 1.0E0 F>D D>S . 1 ok