
Software II: Principles of

Programming Languages

Lecture 6 – Data Types

Some Basic Definitions

• A data type defines a collection of data objects
and a set of predefined operations on those
objects

• A descriptor is the collection of the attributes of
a variable

• An object represents an instance of a user-
defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

Primitive Data Types

• Almost all programming languages provide

a set of primitive data types

• Primitive data types: Those not defined in

terms of other data types

• Some primitive data types are merely

reflections of the hardware

• Others require only a little non-hardware

support for their implementation

The Integer Data Type

• Almost always an exact reflection of the

hardware so the mapping is trivial

• There may be as many as eight different

integer types in a language

• Java’s signed integer sizes: byte, short,

int, long

The Floating Point Data Type

• Model real numbers, but only as approximations

• Languages for scientific use support at least two

floating-point types (e.g., float and double;

sometimes more

• Usually exactly like the hardware, but not always

• IEEE Floating-Point

Standard 754

Complex Data Type

• Some languages support a complex type,

e.g., C99, Fortran, and Python

• Each value consists of two floats, the real

part and the imaginary part

• Literal form

– (in Fortran: (7, 3)

– (in Python): (7 + 3j)

real component

imaginary

component

The Decimal Data Type

• For business applications (money)

• Essential to COBOL

• C# offers a decimal data type

• Store a fixed number of decimal digits, in

coded form (BCD)

– Advantage: accuracy

– Disadvantages: limited range, wastes memory

The Boolean DataType

• Simplest of all

• Range of values: two elements, one for

true and one for false

• Could be implemented as bits, but often as

bytes

• Advantage: readability

The Character Data Type

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode (UCS-2)

– Includes characters from most natural languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003

Character String Types

• Values are sequences of characters

• Design issues:

• Is it a primitive type or just a special kind of

array?

• Should the length of strings be static or

dynamic?

Character String Types

Operations

• Typical operations:

– Assignment and copying

– Comparison (=, >, etc.)

– Catenation

– Substring reference

– Pattern matching

Character String Type in Certain

Languages

• C and C++

– Not primitive

– Use char arrays and a library of functions that

provide operations

• SNOBOL4 (a string manipulation language)

– Primitive

– Many operations, including elaborate pattern

matching

Character String Type in Certain

Languages

• Fortran and Python

– Primitive type with assignment and several

operations

• Java

– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP

– Provide built-in pattern matching, using regular

expressions

Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++

– In these languages, a special character is used

to indicate the end of a string’s characters,

rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,

JavaScript

• Ada supports all three string length options

Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they

are inexpensive to provide--why not have

them?

• Dynamic length is nice, but is it worth the

expense?

Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they

are inexpensive to provide--why not have

them?

• Dynamic length is nice, but is it worth the

expense?

Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-

time descriptor for length (but not in C and

C++)

• Dynamic length: need run-time descriptor;

allocation/deallocation is the biggest

implementation problem

Compile- and Run-Time

Descriptors

Compile-time

descriptor for

static strings

Run-time descriptor

for limited dynamic

strings

User-Defined Ordinal Types

• An ordinal type is one in which the range of

possible values can be easily associated

with the set of positive integers

• Examples of primitive ordinal types in Java

– integer

– char

– boolean

Enumeration Types

• All possible values, which are named

constants, are provided in the definition

• C# example

– enum days {mon, tue, wed, thu, fri, sat, sun};

Enumeration Types

• Design issues

– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is

the type of an occurrence of that constant

checked?

– Are enumeration values coerced to integer?

– Any other type coerced to an enumeration type?

Design issues

• Is an enumeration constant allowed to

appear in more than one type definition, and

if so, how is the type of an occurrence of

that constant checked?

• Are enumeration values coerced to integer?

• Any other type coerced to an enumeration

type?

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a color as

a number

• Aid to reliability, e.g., compiler can check:

– operations (don’t allow colors to be added)

– No enumeration variable can be assigned a value

outside its defined range

– Ada, C#, and Java 5.0 provide better support for

enumeration than C++ because enumeration type

variables in these languages are not coerced into integer

types

Subrange Types

• An ordered contiguous subsequence of an

ordinal type

– Example: 12..18 is a subrange of integer type

• Ada’s design
type Days is (mon, tue, wed, thu, fri, sat,

sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

Subrange Evaluation

• Aid to readability

– Make it clear to the readers that variables of

subrange can store only certain range of values

• Reliability

– Assigning a value to a subrange variable that is

outside the specified range is detected as an

error

Implementation of User-Defined

Ordinal Types

• Enumeration types are implemented as

integers

• Subrange types are implemented like the

parent types with code inserted (by the

compiler) to restrict assignments to

subrange variables

Array Types

• An array is a homogeneous aggregate of

data elements in which an individual

element is identified by its position in the

aggregate, relative to the first element.

Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element

references range checked?

• When are subscript ranges bound?

• When does allocation take place?

Array Design Issues

• Are ragged or rectangular multidimensional

arrays allowed, or both?

• What is the maximum number of

subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

Array Indexing

• Indexing (or subscripting) is a mapping

from indices to elements
array_name (index_value_list) → an element

• Index Syntax

– Fortran and Ada use parentheses

• Ada explicitly uses parentheses to show uniformity

between array references and function calls because

both are mappings

– Most other languages use brackets

Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Ada: integer or enumeration (includes

Boolean and char)

• Java: integer types only

Index range checking

• C, C++, Perl, and Fortran do not specify

range checking

• Java, ML, C# specify range checking

• In Ada, the default is to require range

• checking, but it can be turned off

Subscript Binding and Array

Categories

• Static: subscript ranges are statically bound

and storage allocation is static (before run-

time)

– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are

statically bound, but the allocation is done

at declaration time

– Advantage: space efficiency

Subscript Binding and Array

Categories (continued)

• Stack-dynamic: subscript ranges are dynamically

bound and the storage allocation is dynamic (done

at run-time)

– Advantage: flexibility (the size of an array need not be

known until the array is to be used)

• Fixed heap-dynamic: similar to fixed stack-

dynamic: storage binding is dynamic but fixed

after allocation (i.e., binding is done when

requested and storage is allocated from heap, not

stack)

Subscript Binding and Array

Categories (continued)

• Heap-dynamic: binding of subscript ranges

and storage allocation is dynamic and can

change any number of times

– Advantage: flexibility (arrays can grow or

shrink during program execution)

Subscript Binding and Array

Categories (continued)

• C and C++ arrays that include static modifier are

static

• C and C++ arrays without static modifier are

fixed stack-dynamic

• C and C++ provide fixed heap-dynamic arrays

• C# includes a second array class ArrayList that

provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support heap-

dynamic arrays

Array Initialization

• Some language allow initialization at the

time of storage allocation

– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = ″freddie″;

– Arrays of strings in C and C++
char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};

Heterogeneous Arrays

• A heterogeneous array is one in which the

elements need not be of the same type

• Supported by Perl, Python, JavaScript, and

Ruby

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {″Mike″, ″Fred″, ″Mary

Lou″};

• Ada
– List : array (1..5) of Integer :=

(1 => 17, 3 => 34, others => 0);

Array Initialization

• Python

– List comprehensions

list = [x ** 2 for x in range(12) if x % 3 == 0]

puts [0, 9, 36, 81] in list

Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as unary
operators (for example, to reverse column elements)

• Ada allows array assignment but also catenation

• Python’s array assignments, but they are only reference
changes. Python also supports array catenation and
element membership operations

• Ruby also provides array catenation

• Fortran provides elemental operations because they are
between pairs of array elements
– For example, + operator between two arrays results in an array of

the sums of the element pairs of the two arrays

Evaluation and Comparison to Arrays

• Records are used when collection of data values is
heterogeneous

• Access to array elements is much slower than
access to record fields, because subscripts are
dynamic (field names are static)

• Dynamic subscripts could be used with record
field access, but it would disallow type checking
and it would be much slower

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned

array in which all of the rows have the same

number of elements and all columns have

the same number of elements

• A jagged matrix has rows with varying

number of elements

– Possible when multi-dimensioned arrays

actually appear as arrays of arrays

Rectangular and Jagged Arrays

• C, C++, and Java support jagged arrays

• Fortran, Ada, and C# support rectangular

arrays (C# also supports jagged arrays)

Slices

• A slice is some substructure of an array;

nothing more than a referencing mechanism

• Slices are only useful in languages that have

array operations

Slice Examples

• Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

– vector (3:6) is a three-element array

– mat[0][0:2] is the first and second element of

the first row of mat

• Ruby supports slices with the slice method

– list.slice(2, 2) returns the third and fourth

elements of list

Implementation of Arrays

• Access function maps subscript expressions

to an address in the array

• Access function for single-dimensioned

arrays:

address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)

Accessing Multi-dimensioned

Arrays

• Two common ways:

– Row major order (by rows) – used in most languages

– Column major order (by columns) – used in Fortran

– A compile-time descriptor

for a multidimensional

array

Locating an Element in a Multi-

dimensioned Array

• General format

– Location (a[I,j]) = address of a [row_lb,col_lb]

+ (((I - row_lb) * n)

+ (j - col_lb)) * element_size

Compile-Time Descriptors

Single-dimensioned array Multidimensional array

Associative Arrays

• An associative array is an unordered

collection of data elements that are

indexed by an equal number of values

called keys

– User-defined keys must be stored

Associative Arrays

• Design issues:

- What is the form of references to elements?

- Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and

Lua

– In Lua, they are supported by tables

Associative Arrays in Perl

• Names begin with %; literals are

delimited by parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed"

=> 65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

delete $hi_temps{"Tue"};

Record Types

• A record is a possibly heterogeneous

aggregate of data elements in which the

individual elements are identified by names

• Design issues:

– What is the syntactic form of references to the

field?

– Are elliptical references allowed

Definition of Records in COBOL

• COBOL uses level numbers to show nested

records; others use recursive definition
01 EMP-REC.

02 EMP-NAME.

05 FIRST PIC X(20).

05 MID PIC X(10).

05 LAST PIC X(20).

02 HOURLY-RATE PIC 99V99.

Definition of Records in Ada

• Record structures are indicated in an

orthogonal way

type Emp_Rec_Type is record

First: String (1..20);

Mid: String (1..10);

Last: String (1..20);

Hourly_Rate: Float;

end record;

Emp_Rec: Emp_Rec_Type;

References to Records

• Record field references

1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ...
record_name_n.field_name

• Fully qualified references must include all record
names

Elliptical References

• Elliptical references allow leaving out record
names as long as the reference is unambiguous,
for example in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST
of EMP-REC are elliptical references to the
employee’s first name

Operations on Records

• Assignment is very common if the types are

identical

• Ada allows record comparison

• Ada records can be initialized with

aggregate literals

• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the

corresponding field in the target record

Evaluation and Comparison to

Arrays

• Records are used when collection of data
values is heterogeneous

• Access to array elements is much slower
than access to record fields, because
subscripts are dynamic (field names are
static)

• Dynamic subscripts could be used with
record field access, but it would disallow
type checking and it would be much slower

Implementation of Record Type

Offset address relative to the

beginning of the records is

associated with each field

Tuple Types

• A tuple is a data type that is similar to a

record, except that the elements are not

named

Tuple Types

• Used in Python, ML, and F# to allow

functions to return multiple values

– Python

• Closely related to its lists, but immutable

• Create with a tuple literal

myTuple = (3, 5.8, ′apple′)

Referenced with subscripts (begin at 1)

Catenation with + and deleted with del

Tuple Types in Python

• Closely related to its lists, but immutable

• Create with a tuple literal

myTuple = (3, 5.8, ′apple′)

• Referenced with subscripts (begin at 1)

• Catenation with + and deleted with del

Tuple Types in ML

Given

val myTuple = (3, 5.8, ′apple′);

Access as follows:

#1(myTuple) is the first element

A new tuple type can be defined

type intReal = int * real;

Tuple Types in F#

let tup = (3, 5, 7)

let a, b, c = tup

This assigns a tuple to a tuple pattern

(a, b, c)

List Types

• Lists in LISP and Scheme are delimited by

parentheses and use no commas

(A B C D) and (A (B C) D)

• Data and code have the same form

As data, (A B C) is literally what it is

As code, (A B C) is the function A applied to the

parameters B and C

• The interpreter needs to know which a list is, so if

it is data, we quote it with an apostrophe

′(A B C) is data

List Operations in Scheme

• CAR returns the first element of its list parameter

(CAR ′(A B C)) returns A

• CDR returns the remainder of its list parameter

after the first element has been removed

(CDR ′(A B C)) returns (B C)

• CONS puts its first parameter into its second

parameter, a list, to make a new list

(CONS ′A (B C)) returns (A B C)

• LIST returns a new list of its parameters

(LIST ′A ′B ′(C D)) returns (A B (C D))

List Operations in ML

• Lists are written in brackets and the elements are

separated by commas

• List elements must be of the same type

• The Scheme CONS function is a binary operator in

ML, ::

3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]

• The Scheme CAR and CDR functions are

named hd and tl, respectively

Lists n F# and ML

• F# Lists

– Like those of ML, except elements are separated by

semicolons and hd and tl are methods of the List class

• Python Lists

– The list data type also serves as Python’s arrays

– Unlike Scheme, Common LISP, ML, and F#, Python’s

lists are mutable

– Elements can be of any type

– Create a list with an assignment

myList = [3, 5.8, "grape"]

Lists in Python

• List elements are referenced with subscripting, with

indices beginning at zero

x = myList[1] Sets x to 5.8

• List elements can be deleted with del

del myList[1]

• List Comprehensions – derived from set notation

[x * x for x in range(6) if x % 3 == 0]

range(12) creates [0, 1, 2, 3, 4, 5, 6]

Constructed list: [0, 9, 36]

List Comprehensions - Example

• Haskell’s List Comprehensions

– The original

[n * n | n <- [1..10]]

• F#’s List Comprehensions

let myArray = [|for i in 1 .. 5 -> [i * i) |]

• Both C# and Java supports lists through

their generic heap-dynamic collection

classes, List and ArrayList, respectively

Unions Types

• A union is a type whose variables are

allowed to store different type values at

different times during execution

• Design issues

– Should type checking be required?

– Should unions be embedded in records?

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union

constructs in which there is no language

support for type checking; the union in

these languages is called free union

• Type checking of unions require that each

union include a type indicator called a

discriminant

– Supported by Ada

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;

end record;

Ada Union Type Illustrated

A discriminated union of three shape variables

Implementation of Unions

type Node (Tag : Boolean) is

record

case Tag is

when True => Count : Integer;

when False => Sum : Float;

end case;

end record;

Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in

programming language

• Ada’s descriminated unions are safe

Pointer and Reference Types

• A pointer type variable has a range of

values that consists of memory addresses

and a special value, nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location in

the area where storage is dynamically

created (usually called a heap)

Design Issues of Pointers

• What are the scope of and lifetime of a pointer

variable?

• What is the lifetime of a heap-dynamic variable?

• Are pointers restricted as to the type of value to

which they can point?

• Are pointers used for dynamic storage

management, indirect addressing, or both?

• Should the language support pointer types,

reference types, or both?

Pointer Operations

• Two fundamental operations: assignment
and dereferencing

• Assignment is used to set a pointer
variable’s value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value

– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

j = *ptr

sets j to the value located at ptr

Pointer Assignment Illustrated

The assignment operation j = *ptr

Problems with Pointers

• Dangling pointers (dangerous)

– A pointer points to a heap-dynamic variable that has been

deallocated

• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer accessible to

the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-dynamic

variable

• Pointer p1 is later set to point to another newly created heap-

dynamic variable

• The process of losing heap-dynamic variables is called memory

leakage

Pointers in Ada

• Some dangling pointers are disallowed

because dynamic objects can be

automatically deallocated at the end of

pointer's type scope

• The lost heap-dynamic variable problem is

not eliminated by Ada (possible with

UNCHECKED_DEALLOCATION)

Pointers in C and C++

• Extremely flexible but must be used with care

• Pointers can point at any variable regardless of

when or where it was allocated

• Used for dynamic storage management and

addressing

• Pointer arithmetic is possible

• Explicit dereferencing and address-of operators

• Domain type need not be fixed (void *)

void * can point to any type and can be type

checked (cannot be de-referenced)

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]

*(p+i) is equivalent to stuff[i] and p[i]

Reference Types

• C++ includes a special kind of pointer type called
a reference type that is used primarily for formal
parameters

– Advantages of both pass-by-reference and pass-by-
value

• Java extends C++’s reference variables and allows
them to replace pointers entirely

– References are references to objects, rather than being
addresses

• C# includes both the references of Java and the
pointers of C++

Evaluation of Pointers

• Dangling pointers and dangling objects are

problems as is heap management

• Pointers are like goto's--they widen the

range of cells that can be accessed by a

variable

• Pointers or references are necessary for

dynamic data structures--so we can't design

a language without them

Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and

offset

Dangling Pointer Problem

• There are several proposed solutions for

dangling pointers:

– Tombstone

– Lock and Key

Tombstone

• Tombstone is an extra heap cell that is a

pointer to the heap-dynamic variable

• The actual pointer variable points only at

tombstones

• When heap-dynamic variable de-allocated,

tombstone remains but set to nil

• Costly in time and space

Locks-and-keys

• Locks-and-keys use pointer values that are

represented as (key, address) pairs

• Heap-dynamic variables are represented as

variable plus cell for integer lock value

• When heap-dynamic variable allocated, lock value

is created and placed in lock cell and key cell of

pointer

Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage

– Reference counters (eager approach):

reclamation is gradual

– Mark-sweep (lazy approach): reclamation

occurs when the list of variable space becomes

empty

Reference Counter

• Reference counters: maintain a counter in

every cell that store the number of pointers

currently pointing at the cell

– Disadvantages: space required, execution time

required, complications for cells connected

circularly

– Advantage: it is intrinsically incremental, so

significant delays in the application execution

are avoided

Mark-Sweep

• The run-time system allocates storage cells as

requested and disconnects pointers from cells as

necessary; mark-sweep then begins

– Every heap cell has an extra bit used by collection

algorithm

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells

marked as not garbage

– All garbage cells returned to list of available cells

Disadvantages of Mark-Sweep

• In its original form, it was done too

infrequently.

• When done, it caused significant delays in

application execution.

• Contemporary mark-sweep algorithms

avoid this by doing it more often—called

incremental mark-sweep

Marking Algorithm

Variable-Size Cells

• All the difficulties of single-size cells plus more

• Required by most programming languages

• If mark-sweep is used, additional problems occur

• The initial setting of the indicators of all cells in

the heap is difficult

• The marking process in nontrivial

• Maintaining the list of available space is another

source of overhead

Type Checking

• Generalize the concept of operands and operators

to include subprograms and assignments

• Type checking is the activity of ensuring that the

operands of an operator are of compatible types

• A compatible type is one that is either legal for the

operator, or is allowed under language rules to be

implicitly converted, by compiler- generated code,

to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an

operand of an inappropriate type

Type Checking (continued)

• If all type bindings are static, nearly all type

checking can be static

• If type bindings are dynamic, type checking must

be dynamic

• A programming language is strongly typed if type

errors are always detected

• Advantage of strong typing: allows the detection

of the misuses of variables that result in type

errors

Strong Typing – Language Examples

• C and C++ are not: parameter type checking

can be avoided; unions are not type checked

• Ada is, almost (UNCHECKED CONVERSION is

loophole)

• Java and C# are similar to Ada

Type Coercion

• Coercion rules strongly affect strong typing-

-they can weaken it considerably (C++

versus Ada)

• Although Java has just half the assignment

coercions of C++, its strong typing is still

far less effective than that of Ada

Name Type Equivalence

• Name type equivalence means the two variables

have equivalent types if they are in either the same

declaration or in declarations that use the same

type name

• Easy to implement but highly restrictive:

• Subranges of integer types are not equivalent with

integer types

• Formal parameters must be the same type as their

corresponding actual parameters

Structure Type Equivalence

• Structure type equivalence means that two

variables have equivalent types if their

types have identical structures

• More flexible, but harder to implement

Type Equivalence (continued)

• Consider the problem of two structured types:

– Are two record types equivalent if they are
structurally the same but use different field
names?

– Are two array types equivalent if they are the
same except that the subscripts are different?

(e.g. [1..10] and [0..9])

Type Equivalence (continued)

• Consider the problem of two structured types:

– Are two enumeration types equivalent if their
components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same
structure (e.g. different units of speed, both
float)

Theory and Data Types

• Type theory is a broad area of study in

mathematics, logic, computer science, and

philosophy

• Two branches of type theory in computer

science:

– Practical – data types in commercial languages

– Abstract – typed lambda calculus

• A type system is a set of types and the rules

that govern their use in programs

Theory and Data Types (continued)

• Formal model of a type system is a set of

types and a collection of functions that

define the type rules

– Either an attribute grammar or a type map could

be used for the functions

– Finite mappings – model arrays and functions

– Cartesian products – model tuples and records

– Set unions – model union types

– Subsets – model subtypes

Summary

• The data types of a language are a large part of
what determines that language’s style and
usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to
control dynamic storage management

