
Software II: Principles of

Programming Languages

Lecture 4 –Language Translation:

Lexical and Syntactic Analysis

Translation

• A translator transforms source code (a program written in

one language) into object code (the equivalent program in

another language, presumably the computer’s native

language).

• Such translators include:

– Assemblers – translators where the source language (language of

the source code) is a symbolic equivalent of the machine language.

– Compilers – translators where the source language is a higher-level

language and the object language is either assembly language or

machine language.

– Loader (or Link Editor) – assembles one or more object program

(together with library routines) into a single program that the

computer can run with all its addresses accessible.

– Preprocessor – which perform work in preparation for compiling

Structure Of a Typical Language Implementation

Linker

Translator (software)

Translator (software)

Run-time

support

library

Interpreter (hardware,

software, or firmware)

Operations (hardware,

software, or firmware)

Virtual computer (partially

or completely software

simulated)

Output

Error

messages

Source

program

Source

program

Translation

error messages

Translation

error messages

Object

programs Execution

data

Executable

program

Translation Loading Execution

Compiled vs. Interpreted Language

Most programming languages are designed with the intent of

implementing it through compilation or interpretation.

• Compiled languages include:

– C, C++, FORTRAN, Pascal and Ada.

– Their runtime routines are limited to supporting a few

operations without a close analogue in the machine

language (e.g., input/output)

• Interpreted languages include:

– LISP, ML, Perl, Postscript, Prolog and Smalltalk.

– The translator produces an intermediate form of the

program which the executor can interpret quickly.

The Java Virtual Machine

• While Java is closer to C++ than to LISP in form,

it is translated into an intermediate representation

called bytecodes.

– These bytecodes are interpreted by the Java

Virtual Machine.

– The time needed to interpret the bytecodes is

relatively small compared to the transmission

time for Java applets.

The Translation Process

• The translation process may be fairly simple (as in
the case of Perl, Prolog or LISP), especially if one
is willing to write a software interpreter and accept
poor execution speed.

• Translation process is usually divided into 2 parts:
analysis of the source program and synthesis of
the object program

Structure of a

Compiler

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Optimization

Code Generation

Lexical tokens

Parse tree

Intermediate Code

Optimized int. code

Linking
Object code

Executable

code

COMPILATION LOADING

Object code

from other files

Symbol table

Other tables

Source

program

recognition

phases

Object Code

Generation

Phases

Source program

Introduction

• Language implementation systems must

analyze source code, regardless of the

specific implementation approach

• Nearly all syntax analysis is based on a

formal description of the syntax of the

source language (BNF)

Syntax Analysis

• The syntax analysis portion of a language

processor nearly always consists of two parts:

– A low-level part called a lexical analyzer

(mathematically, a finite automaton based on a

regular grammar)

– A high-level part called a syntax analyzer, or

parser (mathematically, a push-down

automaton based on a context-free grammar, or

BNF)

Advantages of Using BNF to Describe Syntax

• Provides a clear and concise syntax

description

• The parser can be based directly on the

BNF

• Parsers based on BNF are easy to maintain

Reasons to Separate Lexical and

Syntax Analysis

• Simplicity - less complex approaches can be

used for lexical analysis; separating them

simplifies the parser

• Efficiency - separation allows optimization

of the lexical analyzer

• Portability - parts of the lexical analyzer

may not be portable, but the parser always

is portable

Lexical Analysis (Scanning)

• Lexical analysis involves the recognition of the elementary
constituents of a program.

– These are the keywords, operators, comments,
delimiters, identifiers, literals, etc.

– The individual characters of the source program must
be grouped together to form these constituents.

• The scanner must identify each lexeme and associate with
it the grammatical component within the program with
which the lexeme is associated. We call the grammatical
component the token.

• The formal model for lexical analysis is a finite automaton.

• This is sometimes complicated by the difficulty in
recognizing where the boundaries between tokens is:
– e.g., DO 10 I = 1, 5 DO 10 I = 1.5

Implementing A Scanner

• We can construct a lexical analyzer (or

scanner)by one of three methods:

– Write a formal description of the regular expressions

that we wish to accept and use a software tool to

generate a scanner automatically.

– Write a program that simulates the finite automaton that

recognizes the regular expressions that we wish to

accept.

– Construct a table that describes the finite automaton and

write a program that uses the the data in the table.

Finite-State Automata

• A Finite Automaton is a state machine that

changes state as it processes each character

is an expression and then:

– accepts the expression if it is in a final state

(the expression belongs to the language) or

– reject the expression if it is not in a final state

(the expression does not belong to the

language)

FA To Recognize Optionally Signed Integers

q0 q1 q2

-

+

digit

digit

digit

Converting (0+1)*01(0+1)* to an FA

q0 q1 q2
0 1

0 0

1
1

State Diagram

Scanning Integer Expressions

#include <ctype.h>

#include <stdio.h>

/* The token as an enumerated type */

typedef enum {PLUS, TIMES, LPAREN, RPAREN,

EOL, NUMBER, ERROR} TokenType;

int numval; /* computed numeric value of a

NUMBER */

int curr_char; /* Current character */

TokenType getToken(void)

{

while ((curr_char = getchar()) == ' ')

; /* Skip white space */

if (isdigit(curr_char)) {

/* recognize a NUMBER token */

numval = 0;

while (isdigit(curr_char)) {

/* compute numeric value */

numval = 10 * numval

+ curr_char - '0';

curr_char = getchar();

}

/* put back last character onto input */

ungetc(curr_char, stdin);

return(NUMBER);

}

else {

/* recognize a special symbol */

switch(curr_char) {

case '(': return (LPAREN);

case ')': return (RPAREN);

case '+': return (PLUS);

case '*': return (TIMES);

case '\n': return (EOL);

default: return (ERROR);

}

}

}

int main(void)

{

TokenType token;

do {

token = getToken();

switch(token) {

case PLUS: printf("PLUS\n"); break;

case TIMES: printf("TIMES\n"); break;

case LPAREN:printf("LPAREN\n"); break;

case RPAREN:printf("RPAREN\n"); break;

case EOL: printf("EOL\n"); break;

case NUMBER:printf("NUMBER: %d\n", numval);

break;

case ERROR: printf("ERROR: %c\n", curr_char);

}

} while (token != EOL);

return(0);

}

Syntactic Analysis (Parsing)

• The grammatical structure of the program is
identified (e.g., statements, procedures,
expressions, etc.)

• The parser must recognize how lexemes are
grouped to form expressions, statements,
declarations, etc.

• The actions of semantic analysis are are usually
initiated by the parser.

• The formal model for the parser is the pushdown
automaton.

The Parsing Problem

• Goals of the parser, given an input program:

– Find all syntax errors; for each, produce an

appropriate diagnostic message and recover

quickly

– Produce the parse tree, or at least a trace of the

parse tree, for the program

Types of Parsers

• Parsers can be either top-down or bottom-

up:

– Top-down parsers build the parse-tree starting

from the root building until all the tokens are

associated with a leaf on the parse tree.

– Bottom-up parsers build the parse-tree starting

from the leaves, assembling the tree fragments

until the parse tree is complete.

Top-down Parsers

Sentence

Subject phrase Predicate

definite

article
Adjec-

tives

noun

The

Top-down parsing assumes a certain minimum

structure as we start building the parse tree

Bottom-up parsers

The

def.

art.

quick brown

adj. adj.

fox

noun

Subject Phrase

Bottom-up parsers shift

by each token, reducing

them into a non-terminal

as the grammar requires.

Nb: Until we finish

building the predicate,

we have no reason to

reduce anything into the

nonterminal Sentence

Types of Parsers (continued)
• Parsers can be either table-driven or

handwritten:

– Table-driven parsers perform the parsing using

a driver procedure and a table containing

pertinent information about the grammar. The

table is usually generated by automated

software tools called parser generators.

– Handwritten parsers are hand-coded using the

grammar as a guide for the various parsing

procedures.

Types of Parsers (continued)

• LL(1) and LR(1) parsers are table-driven
parsers which are top-down and bottom-up
respectively.

• Recursive-descent parsers are top-down
hand-written parsers.

• Operator-precedence parsers are bottom-up
parsers which are largely handwritten for
parsing expressions.

What is top-down parsing?

• Top-down parsing is a parsing-method where a

sentence is parsed starting from the root of the

parse tree (with the “Start” symbol), working

recursively down to the leaves of the tree (with the

terminals).

• In practice, top-down parsing algorithms are easier

to understand than bottom-up algorithms.

• Not all grammars can be parsed top-down, but

most context-free grammars can be parsed bottom-

up.

An example of top-down parsing
Let’s consider the

expression grammar:

E ::= E + T | T

T ::= T * F | F

F ::= id | const | (E)

How will it begin parsing

the expression:

3*x + y* z

E

E T

T

T F*

+

F

const

LL(k) grammars

• Top-down grammars are referred to as LL(k)

grammars:

– The first L indicates Left-to-Right scanning.

– The second L indicates Left-most derivation

– The k indicates k lookahead characters.

• We will be examining LL(1) grammars, which

spot errors at the earliest opportunity but provide

strict requirements on our grammars.

LL(1) grammars

• LL(1) grammars determine from a single

lookahead token which alternative derivation to

use in parsing a sentence.

• This requires that if a nonterminal A has two

different productions:

A ::= α and A ::= β

– that a and ß cannot begin with the same token.

� α or ß can derive an empty string but not both.

– if ß =>* ε, α cannot derive any string that begins with a

token that could immediately follow A.

Converting an expression grammar into LL(1) form

• If our expression grammar is originally:

E ::= E + T | T

T ::= T * F | F

F ::= id | const | (E)

• We must convert to the following form if it is to be LL(1)

E ::= T E’

E’ ::= + T E’ | ε

Τ ::= F T ‘

T’ ::= * F T’ | ε

F ::= id | const | (E)

Parse Table
Once the grammar is in LL(1) form, we create a

table showing which production we use in parsing

each nonterminal for every possible lookahead

token:

E E’ T T’ F
1 E ::= TE’

2 E’ ::= +TE’

3 E’ ::= ε
4 T ::= FT’

5 T’ ::= *FT’

6 T’ ::= ε
7 F ::= id

8 F ::= const

9 F ::= (E)

id

+

*

(

)

const

$

2 6

5

1 4 9

3 6

1 4 7

1 4 8

3 6

The Parsing Algorithm

Processing context-free expressions requires the use of a
stack. The Parsing algorithm uses a stack:

Place the start symbol in a node and push it onto the stack.

Fetch a token

REPEAT

Pop a node from the stack

IF it contains a terminal, match it to the current token (no match
indicates a parsing error) and fetch another token

ELSE IF it contains a nonterminal, look it up in the production table
using the nontermina and the current token. Place the variables in
REVERSE order on the stack

UNTIL the stack is empty

Recursive-Descent Parsing
• Recursive-descent parsing is a top-down parsing

technique which shows a series of recursive

procedures to parse the program

• There is a separate procedure for each individual

nonterminal.

• Each procedure is essentially a large if-then-else

structure which looks for the appropriate tokens

when the grammar requires a particular terminal

and calls another procedure recursively when the

grammar requires a nonterminal.

Recursive-Descent Parsing of Expressions
#include <ctype.h>

#include <stdlib.h>

#include <stdio.h>

int token; /* holds the current input

character for the parse */

/* declaration to allow arbitrary recursion */

void command(void);

int expr(void);

int term(void);

int factor(void);

int number(void);

int digit(void);

void error(void)

{

printf("parse error\n");

exit(1);

}

void getToken(void)

{

/* tokens are characters */

token = getchar();

}

void match(char c)

{

if (token == c) getToken();

else error();

}

void command(void)

/* command -> expr '\n' */

{

int result = expr();

if (token == '\n')

/* End the parse and print the result */

printf("The result is %d\n", result);

else

error();

}

int expr(void)

/* expr -> term {'+' term } */

{

int result = term();

while (token == '+') {

match('+');

result += term();

}

return(result);

}

int term(void)

/* term -> factor {'*' factor } */

{

int result = factor();

while (token == '*') {

match('*');

result *= factor();

}

return(result);

}

int factor(void)

/* factor -> '(' expr ')' | number */

{

int result;

if (token == '(') {

match('(');

result = expr();

match(')');

}

else

result = number();

return(result);

}

int number(void)

/* number -> digit {digit } */

{

int result = digit();

while (isdigit(token))

/* The value of a number with a new

trailing digit is its previous value

shifted by a decimal place plus the

value of the new digit */

result = 10 * result + digit();

return(result);

}

int digit(void)

/* digit -> '0' | '1' | '2' | '3' | '4'

| '5' | '6' | '7' | '8' | '9' */

{

int result;

if (isdigit(token)) {

/* The numeric value of a digit character

is the difference between its ASCII

value and the ASCII value of the

character '0' */

result = token - '0';

match(token);

}

else

error();

return(result);

}

void parse(void)

{

getToken(); /* Get the first token */

command(); /* Call the parsing

procedure for the start symbol */

}

int main(void)

{

parse();

return(0);

}

Bottom-up Parsing

• Bottom-up parsers parse a programs from the

leaves of a parse tree, collecting the pieces until

the entire parse tree is built all the way to the root.

• Bottom-up parsers emulate pushdown automata:

– requiring both a state machine (to keep track of what

you are looking for in the grammar) and a stack (to

keep track of what you have already read in the

program).

– making it fairly easy to automate the process of creating

the parser

– ensuring that all context-free grammars can be parsed

by this method.

Bottom-up parsers as shift-reduce parsers

• Bottom-up parsers are frequently called shift-reduce

parsers because of their two basic operations:

– A shift involves moving pushing the current input token

onto the stack and fetching the next input token.

– A reduce involves popping all the variables that

comprise the right-sentential form for a nonterminal

and replacing them on the stack with the equivalent

nonterminal that appears on the left-hand side of that

production.

– While shifting involve pushing and reducing involve

popping, do not think of them as equivalent: a shift also

involve advancing the input token stream and a reduce

involves zero or more pops followed by a push.

LR(k) grammars

• Bottom-up grammars are referred to as LR(k)

grammars:

– The first L indicates Left-to-Right scanning.

– The R that is second indicates Right-most

derivation

– The k indicates k lookahead characters.

• There should be no need for anything more than a

single lookahead, i.e, an LR(1) grammar.

An example - a LR(0) grammar

An LR(0) grammar does not use a lookahead

character to determine the action that it will

take - the current token will be used to

determine the state into which it will go.

Consider the following grammar:

E ::= E + T | T

T ::= + F | - F | F

F ::= id | const

An example - a LR(0) grammar (continued)

Let’s write out our grammar and add to it a special first

production with a special start symbol S:

1 S ::= E $ (indicates that the expression is followed by EOF)

2 E ::= E + T

3 E ::= T

4 T ::= +F

5 T ::= -F

6 T ::= F

7 F ::= id

8 F ::= const

The LR(0) parse table

state

0

1

2

3

4

5

6

7

8

9

10

11

12

ACTION

GOTO

+ - id const $ E T F

s

s

r3

r6

s

s

r7

r8

s

r4

r2

r5

acc

4 5 6 7 1 2 3

8 12

6 7

6 7

9

11

4 5 6 7 10 3

Tracing LR(0) parsing
There are 3 parsing operations:

Shift - moving a token and state onto the stack (we find

the state using the GOTO table).

Reduce n - we pop enough items from the stack to form

the right side of production n and then we push

the nonterminal on its left side of production n on

to thestack, together with the state indicated by the

GOTO table

Accept - we accept the program as completely and

correctly parsed and terminate execution.

Tracing LR(0) parsing - an example

Example - the expression -27 + x

We place the state 0 and the EOF marker $ on the stack.

The action for state 0 is shift. We place the - and

GOTO(0, -) = 5 on the stack 0 $

5 -

0 $

5 -

7 const The action for state 5 is shift. We place the constant on

the stack together with GOTO(5, const) = 7.

0 $

5 -

11 F The action for state 7 is reduce by production 8. Pop

the const (and state 7). Push F and GOTO(5,F) = 11

Tracing LR(0) parsing - an example (continued)

0 $

2 T

The action for state 11 is reduce by production 5.

Pop the - and F (along with states 5 and 11) and

push the T together with GOTO(0,T) = 2

0 $

1 E

The action for state 2 is reduce by production 3. Pop

the T (and state 2). Push the E and GOTO(0,E) = 1.

0 $

1 E

The action for state 1 is shift. We move the + onto the

stack together with GOTO(1, +) = 8.8 +

Tracing LR(0) parsing - an example (continued)

0 $

1 E

8 +
The action for state 8 is shift. We move the id and

GOTO(8, id) = 6 onto the stack.

6 id

0 $

1 E

8 +

3 F
The action for state 6 is reduce by production 7. We

pop the id and state 6. We push F and GOTO(8, F)

= 3

0 $

1 E

8 +

10 T The action for state 3 is reduce by production 6. We

pop the F and state 3. We push T and GOTO(8, T)

= 10.

Tracing LR(0) parsing - an example (continued)

0 $

1 E

The action for state 10 is reduce by production 2. We

pop the T (and state10), the + (and state8) and the E

(and state1). We push the E and GOTO(0,E) = 1.

0 $

1 E

12 $
The action for state 1 is shift. We push the $ and

GOTO (1,E) = 12 onto the stack.

The action for state 12 is accept. The only item on

the stack (excluding the $s) is E, which is the start

symbol in our expression grammar

YACC and Bison

• YACC (Yet Another Compiler Compiler) is

a program that automatically generates a

parser based on specifications written in a

syntax similar to BNF.

• Bison is its GNU equivalent.

YACC Format

%{/* code to insert at beginning of the parser

}%

/* Other YACC definitions, if necessary */

%%

/* grammar and associated actions */

%%

/* auxiliary procedures */

YACC Specification of the Calculator

%{

#include <stdio.h>

}%

%%

command:expr ‘\n’ {printf(“The result is:%d\n”,

$1);}

;

expr : expr ‘+’ term {$$ = $1 + $3; }

| term {$$ = $1; }

;

term : term ‘*’ factor {$$ = $1 * $3; } |

factor {$$ = $1; }

;

factor: number {$$ = $1; }

| ‘(‘ expr ‘)’ { $$ = $2;}

;

number : number digit { $$ = 10 * $1 + $2; }

;

digit : ‘0’ { $$ = 0; }

| ‘1’ { $$ = 1; }

| ‘2’ { $$ = 2; }

| ‘3’ { $$ = 3; }

| ‘4’ { $$ = 4; }

| ‘5’ { $$ = 5; }

| ‘6’ { $$ = 6; }

| ‘7’ { $$ = 7; }

| ‘8’ { $$ = 8; }

| ‘9’ { $$ = 9; }

;

%%

main()

{
yyparse();

return(0);

}

int yylex(void)

{
static int done = 0;

int c;

if (done) return(0); /* stop parsing */

c = getchar();

if (c == ‘\n’)

/* next call will end parsing */

done = 1;

return(c);

}

int yyerror(char *s)

{

/* allows for print error message */

printf(“%s\n”, s);

}

Semantic Analysis

• Semantic analysis is the phase where the meaning

of the syntactic constructs is recognized and

synthesis of the object program is begun.

• While it is possible for the semantic analyzer to

produce an object program, the end result of this

phase is usually a language-independent, machine-

independent intermediate representation of the

program.

Functions of the Semantic Analyzer

The most common functions of semantic analysis

include:

• Symbol-Table Management

• Insertion of Implicit Information

• Error Detection

• Macro processing and Compile-Time Operations

Symbol-Table Management

• The symbol table is one of a translator’s
central data structures.

• The symbol table hold data regarding every
lexeme in a program, including keywords,
operators, identifiers and literals.

• The data within the symbol table is
assembled during the analysis phases of
translation and used during the generation
phases.

Insertion of Implicit Information

• Some information in the source program is

implicit and must be made explicit, e.g., the

type of variables declared by default in

FORTRAN.

Error Detection

• All three analysis phases must be prepared

to handle incorrect programs.

• Syntactic errors involve the incorrect use of

grammatical constructs.

• Semantic errors involve cases where the

semantics are in error, e.g., incompatible

data types.

Macro processing and Compile-Time

Operations

• A macro, its simplest form, is a piece of text that

is inserted into a program where the appropriate

macro call appears. In more complex form, it may

involve the replacement of formal parameters with

their actual values.

• An example of compile –time operations is

conditional compilation, where a segment of

source code will include compiled depending on

the validity of a test condition.

Synthesis of the Object Program

The final stages of the translation process

involve the generation of the object

program. This includes:

• Optimization

• Code Generation

• Linking and Loading

Optimization

• Optimization is improving the efficiency of an

object program (execution time and/or storage

requirements), usually by removing inefficiencies

created by the automated translation process.

• Optimization may be local (confined to a small

section of code which will always be executed as a

unit) or global (tracing through the logical

sequence of instructions)

An Example of Optimization

• The statement

A = B + C + D

• creates the intermediate code

– Temp1 = B + C

– Temp2 = Temp1 + d

– A = Temp2

which generates the object code

– Load B (Step a)

– Add C

– Store Temp1

– Load Temp1 (Step b)

– Add D

– Store Temp2

– Load Temp2 (Step c)

– Store A

Code Generation

• After the intermediate representation is
optimized, object code is created based on
this representation, usually in machine
language.

• This object code may need optimization
itself.

• The object code may be executable or may
need linking.

Linking and Loading

• The various object modules must be

combined into one executable program.

• References to external variables and

procedures must be resolved and external

procedures must be includes in the

executable module.. This information is

found in the loader table.

Bootstrapping

• It is common to write a compiler in the
source language.

• Once the compiler is completed, it is used to
translate itself into an executable program.
This is known as bootstrapping.

• Frequently the first compilation of a
compiler is done by hand due to the lack of
a working compiler.

Diagnostic Compilers

• Production compilers usually concentrate on
creating object code that can be executed
efficiently. Consequently, these compilers do not
always offer error messages that are useful,
especially to novice programmers.

• It was particularly popular in the 1960s to create
compilers that could quickly translate programs
and create compiler-time and runtime error
messages that were particularly helpful to nove
programmers.

• These diagnostic compilers include WATFOR and
PL/C.

