
Software II: Principles of 

Programming Languages

Lecture 4 –Language Translation: 

Lexical and Syntactic Analysis

Translation

• A translator transforms source code (a program written in 

one language) into object code (the equivalent program in 

another language, presumably the computer’s native 

language).

• Such translators include:

– Assemblers – translators where the source language (language of 

the source code) is a symbolic equivalent of the machine language. 

– Compilers – translators where the source language is a higher-level 

language and the object language is either assembly language or 

machine language.

– Loader (or Link Editor) – assembles one or more object program 

(together with library routines) into a single program that the 

computer can run with all its addresses accessible.

– Preprocessor – which perform work in preparation for compiling
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Compiled vs. Interpreted Language

Most programming languages are designed with the intent of 

implementing it through compilation or interpretation.

• Compiled languages include:

– C, C++, FORTRAN, Pascal and Ada.

– Their runtime routines are limited to supporting a few 

operations without a close analogue in the machine 

language (e.g., input/output)

• Interpreted languages include:

– LISP, ML, Perl, Postscript, Prolog and Smalltalk.

– The translator produces an intermediate form of the 

program which the executor can interpret quickly.



The Java Virtual Machine

• While Java is closer to C++ than to LISP in form, 

it is translated into an intermediate representation 

called bytecodes.  

– These bytecodes are interpreted by the Java 

Virtual Machine. 

– The time needed to interpret the bytecodes is 

relatively small compared to the transmission 

time for Java applets.

The Translation Process

• The translation process may be fairly simple (as in 
the case of Perl, Prolog or LISP), especially if one 
is willing to write a software interpreter and accept 
poor execution speed.

• Translation process is usually divided into 2 parts: 
analysis of the source program and synthesis of 
the object program
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Introduction

• Language implementation systems must 

analyze source code, regardless of the 

specific implementation approach

• Nearly all syntax analysis is based on a 

formal description of the syntax of the 

source language (BNF)



Syntax Analysis

• The syntax analysis portion of a language 

processor nearly always consists of two parts:

– A low-level part called a lexical analyzer 

(mathematically, a finite automaton based on a 

regular grammar)

– A high-level part called a syntax analyzer, or 

parser (mathematically, a push-down 

automaton based on a context-free grammar, or 

BNF)

Advantages of Using BNF to Describe Syntax

• Provides a clear and concise syntax 

description

• The parser can be based directly on the 

BNF

• Parsers based on BNF are easy to maintain



Reasons to Separate Lexical and 

Syntax Analysis

• Simplicity - less complex approaches can be 

used for lexical analysis; separating them 

simplifies the parser

• Efficiency - separation allows optimization 

of the lexical analyzer

• Portability - parts of the lexical analyzer 

may not be portable, but the parser always 

is portable

Lexical Analysis (Scanning)

• Lexical analysis involves the recognition of the elementary 
constituents of a program.

– These are the keywords, operators, comments, 
delimiters, identifiers, literals, etc.

– The individual characters of the source program must 
be grouped together to form these constituents.

• The scanner must identify each lexeme and associate with 
it the grammatical component within the program with 
which the lexeme is associated.  We call the grammatical 
component the token.

• The formal model for lexical analysis is a finite automaton.

• This is sometimes complicated by the difficulty in 
recognizing where the boundaries between tokens is:
– e.g., DO 10 I = 1, 5 DO 10 I = 1.5



Implementing A Scanner

• We can construct a lexical analyzer (or 

scanner)by one of three methods:

– Write a formal description of the regular expressions 

that we wish to accept and use a software tool to 

generate a scanner automatically.

– Write a program that simulates the finite automaton that 

recognizes the regular expressions that we wish to 

accept.

– Construct a table that describes the finite automaton and 

write a program that uses the the data in the table.

Finite-State Automata

• A Finite Automaton is a state machine that 

changes state as it processes each character 

is an expression and then:

– accepts the expression if it is in a final state 

(the expression belongs to the language) or

– reject the expression if it is not in a final state 

(the expression does not belong to the 

language)
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State Diagram

Scanning Integer Expressions

#include <ctype.h>

#include <stdio.h>

/* The token as an enumerated type */

typedef enum {PLUS, TIMES, LPAREN, RPAREN,

EOL, NUMBER, ERROR} TokenType;

int numval; /* computed numeric value of a

NUMBER */

int curr_char; /* Current character */



TokenType getToken(void)

{

while ((curr_char = getchar()) == ' ')

; /* Skip white space */

if (isdigit(curr_char)) {

/*  recognize a NUMBER token */

numval = 0;

while (isdigit(curr_char)) {

/* compute numeric value */

numval = 10 * numval

+ curr_char - '0';

curr_char = getchar();

}

/* put back last character onto input */

ungetc(curr_char, stdin);

return(NUMBER);

}

else {

/* recognize a special symbol */

switch(curr_char) {

case '(': return (LPAREN);

case ')': return (RPAREN);

case '+': return (PLUS); 

case '*': return (TIMES);

case '\n': return (EOL);

default: return (ERROR);

}

}

}



int main(void)

{

TokenType token;

do {

token = getToken();

switch(token) {

case PLUS: printf("PLUS\n"); break;

case TIMES: printf("TIMES\n"); break;

case LPAREN:printf("LPAREN\n"); break;

case RPAREN:printf("RPAREN\n"); break;

case EOL: printf("EOL\n"); break;

case NUMBER:printf("NUMBER: %d\n", numval);

break;

case ERROR: printf("ERROR: %c\n", curr_char);

}

} while (token != EOL);

return(0);

}



Syntactic Analysis (Parsing)

• The grammatical structure of the program is 
identified (e.g., statements, procedures, 
expressions, etc.)

• The parser must recognize how lexemes are 
grouped to form expressions, statements, 
declarations, etc.

• The actions of semantic analysis are are usually 
initiated by the parser.

• The formal model for the parser is the pushdown 
automaton.

The Parsing Problem

• Goals of the parser, given an input program:

– Find all syntax errors; for each, produce an 

appropriate diagnostic message and recover 

quickly

– Produce the parse tree, or at least a trace of the 

parse tree, for the program



Types of Parsers

• Parsers can be either top-down or bottom-

up:

– Top-down parsers build the parse-tree starting 

from the root building until all the tokens are 

associated with a leaf on the parse tree.

– Bottom-up parsers build the parse-tree starting 

from the leaves, assembling the tree fragments 

until the parse tree is complete. 

Top-down Parsers

Sentence

Subject phrase Predicate

definite

article
Adjec-

tives

noun

The

Top-down parsing assumes a certain minimum 

structure as we start building the parse tree



Bottom-up parsers
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fox

noun
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Bottom-up parsers shift

by each token, reducing

them into a non-terminal

as the grammar requires.

Nb: Until we finish 

building the predicate, 

we have no reason to 

reduce anything into the 

nonterminal Sentence

Types of Parsers (continued)
• Parsers can be either table-driven or 

handwritten:

– Table-driven parsers perform the parsing using 

a driver procedure and a table containing 

pertinent information about the grammar.  The 

table is usually generated by automated 

software tools called parser generators.

– Handwritten parsers are hand-coded using the 

grammar as a guide for the various parsing 

procedures.



Types of Parsers (continued)

• LL(1) and LR(1) parsers are table-driven 
parsers  which are top-down and bottom-up 
respectively.

• Recursive-descent parsers are top-down 
hand-written parsers.

• Operator-precedence parsers are bottom-up 
parsers which are largely handwritten for 
parsing expressions.

What is top-down parsing?

• Top-down parsing is a parsing-method where a 

sentence is parsed starting from the root of the 

parse tree (with the “Start” symbol), working 

recursively down to the leaves of the tree (with the 

terminals).

• In practice, top-down parsing algorithms are easier 

to understand than bottom-up algorithms.

• Not all grammars can be parsed top-down, but 

most context-free grammars can be parsed bottom-

up. 



An example of top-down parsing
Let’s consider the 

expression grammar:

E ::= E + T | T

T ::= T * F | F

F ::= id | const | ( E )

How will it begin parsing 

the expression:

3*x + y* z

E

E T

T

T F*

+

F

const

LL(k) grammars

• Top-down grammars are referred to as LL(k) 

grammars:

– The first L indicates Left-to-Right scanning.

– The second L indicates Left-most derivation

– The k indicates k lookahead characters.

• We will be examining LL(1) grammars, which 

spot errors at the earliest opportunity but provide 

strict requirements on our grammars.



LL(1) grammars

• LL(1) grammars determine from a single 

lookahead token which alternative derivation to 

use in parsing a sentence.

• This requires that if a nonterminal A has two 

different productions:

A ::= α and A ::= β

– that a and ß cannot begin with the same token.

� α or ß can derive an empty string but not both.

– if ß =>* ε, α cannot derive any string that begins with a 

token that could immediately follow A.

Converting an expression grammar into LL(1) form

• If our expression grammar is originally:

E ::= E + T |  T

T ::= T * F |  F

F ::= id | const | ( E )

• We must convert to the following form if it is to be LL(1)

E ::= T E’

E’ ::= + T E’ | ε

Τ ::= F T ‘

T’ ::= * F T’ | ε

F ::= id | const | ( E )



Parse Table
Once the grammar is in LL(1) form,  we create a 

table showing which production we use in parsing 

each nonterminal for every  possible lookahead 

token:

E E’ T T’ F
1 E  ::= TE’

2 E’ ::= +TE’

3 E’ ::= ε
4 T  ::=  FT’

5 T’ ::=  *FT’

6 T’ ::= ε
7 F ::= id

8 F ::= const

9 F ::= ( E )

id

+

*

(

)

const

$

2 6

5

1 4 9

3 6

1 4 7

1 4 8

3 6

The Parsing Algorithm

Processing context-free expressions requires the use of a 
stack.  The Parsing algorithm uses a stack:

Place the start symbol in a node and push it onto the stack.

Fetch a token

REPEAT

Pop a node from the stack

IF it contains a terminal, match it to the current token (no match 
indicates a parsing error) and fetch another token

ELSE IF it contains a nonterminal, look it up in the production table 
using the nontermina and the current token.  Place the variables in 
REVERSE order on the stack

UNTIL the stack is empty



Recursive-Descent Parsing
• Recursive-descent parsing is a top-down parsing 

technique which shows a series of recursive 

procedures to parse the program

• There is a separate procedure for each individual 

nonterminal.

• Each procedure is essentially a large if-then-else 

structure which looks for the appropriate tokens 

when the grammar requires a particular terminal 

and calls another procedure recursively when the 

grammar requires a nonterminal.

Recursive-Descent Parsing of Expressions
#include <ctype.h>

#include <stdlib.h>

#include <stdio.h>

int token; /* holds the current input

character for the parse */

/* declaration to allow arbitrary recursion */

void command(void);

int expr(void);

int term(void);

int factor(void);

int number(void);

int digit(void);



void error(void)

{

printf("parse error\n");

exit(1);

}

void getToken(void)

{

/* tokens are characters */

token = getchar();

}

void match(char c)

{

if (token == c) getToken();

else  error();

}

void command(void)

/* command -> expr '\n' */

{

int result = expr();

if (token == '\n')

/* End the parse and print the result */

printf("The result is %d\n", result);

else

error();

}



int expr(void)

/* expr -> term {'+' term } */

{

int result = term();

while (token == '+') {

match('+');

result += term();

}

return(result);

}

int term(void)

/* term -> factor {'*' factor } */

{

int result = factor();

while (token == '*') {

match('*');

result *= factor();

}

return(result);

}



int factor(void)

/* factor -> '(' expr ')' | number */

{

int result;

if (token == '(') {

match('(');

result = expr();

match(')');

}

else

result = number();

return(result);

}

int number(void)

/* number -> digit {digit } */

{

int result = digit();

while (isdigit(token))

/* The value of a number with a new

trailing digit is its previous value

shifted by a decimal place plus the

value of the new digit  */

result = 10 * result + digit();

return(result);

}



int digit(void)

/* digit -> '0' | '1' | '2' | '3' | '4'

| '5' | '6' | '7' | '8' | '9' */

{

int result;

if (isdigit(token)) {

/* The numeric value of a digit character

is the difference between its ASCII

value and the ASCII value of the

character '0' */

result = token - '0';

match(token); 

}

else

error();

return(result);

}

void parse(void)

{

getToken(); /* Get the first token */

command(); /* Call the parsing

procedure for the start symbol */

}

int main(void)

{

parse();

return(0);

}



Bottom-up Parsing

• Bottom-up parsers parse a programs from the 

leaves of a parse tree, collecting the pieces until 

the entire parse tree is built all the way to the root.

• Bottom-up parsers emulate pushdown automata:

– requiring both a state machine (to keep track of what 

you are looking for in the grammar) and a stack (to 

keep track of what you have already read in the 

program). 

– making it fairly easy to automate the process of creating 

the parser

– ensuring that all context-free grammars can be parsed 

by this method.

Bottom-up parsers as shift-reduce parsers

• Bottom-up parsers are frequently called shift-reduce 

parsers because of their two basic operations:

– A shift involves moving pushing the current input token 

onto the stack and fetching the next input token.

– A reduce involves popping all the variables that 

comprise the right-sentential form for a nonterminal 

and replacing them on the stack with the equivalent 

nonterminal that appears on the left-hand side of that 

production. 

– While shifting involve pushing and reducing involve 

popping, do not think of them as equivalent: a shift also 

involve advancing the input token stream and a reduce 

involves zero or more pops followed by a push.



LR(k) grammars

• Bottom-up grammars are referred to as LR(k) 

grammars:

– The first L indicates Left-to-Right scanning.

– The R  that is second indicates Right-most 

derivation

– The k indicates k lookahead characters.

• There should be no need for anything more than a 

single lookahead, i.e, an LR(1) grammar.

An example - a LR(0) grammar

An LR(0) grammar does not use a lookahead 

character to determine the action that it will 

take - the current token will be used to 

determine the state into which it will go.

Consider the following grammar:

E ::= E + T | T

T ::= + F | - F | F

F ::= id | const



An example - a LR(0) grammar (continued)

Let’s write out our grammar and add to it a special first 

production with a special start symbol S:

1 S ::= E $ (indicates that the expression is followed by EOF)

2 E ::= E + T

3 E ::= T

4 T ::= +F

5 T ::= -F

6 T ::= F

7 F ::= id

8 F ::= const

The LR(0) parse table

state

0

1

2

3

4

5

6

7

8

9

10

11

12

ACTION

GOTO

+ - id const $ E T F

s

s

r3

r6

s

s

r7

r8

s

r4

r2

r5

acc

4 5 6 7 1 2 3

8 12

6 7

6 7

9

11

4 5 6 7 10 3



Tracing LR(0) parsing
There are 3 parsing operations:

Shift - moving a token and state onto the stack (we find 

the state using the GOTO table).

Reduce n - we pop enough items from the stack to form 

the right side of  production n and then we push 

the nonterminal on its left side of production n on 

to thestack, together with the state indicated by the 

GOTO table

Accept - we accept the program as completely and 

correctly parsed and terminate execution.

Tracing LR(0) parsing - an example

Example - the expression -27 + x 

We place the state 0 and the EOF marker $ on the stack.

The action for state 0 is shift.  We place the - and 

GOTO(0, -) = 5 on the stack 0       $

5        -

0       $

5        -

7     const The action for state 5 is shift.  We place the constant on

the stack together  with GOTO(5, const) = 7. 

0       $

5        -

11      F The action for state 7 is reduce by production 8.  Pop

the const (and state 7).  Push F and GOTO(5,F) = 11 



Tracing LR(0) parsing - an example (continued)

0       $

2       T

The action for state 11 is reduce by production 5.  

Pop the  - and F (along with states 5 and 11) and 

push the T together with GOTO(0,T) = 2

0       $

1       E

The action for state 2 is reduce by production 3.  Pop

the T (and state 2).  Push the E and GOTO(0,E) = 1.

0       $

1       E

The action for state 1 is shift.  We move the + onto the

stack together with GOTO(1, +) = 8.8       +

Tracing LR(0) parsing - an example (continued)

0       $

1       E

8       +
The action for state 8 is shift.  We move the id and 

GOTO(8, id) = 6 onto the stack.

6      id

0       $

1       E

8       +

3       F
The action for state 6 is reduce by production 7.  We 

pop the id and state 6.  We push F and GOTO(8, F) 

= 3

0       $

1       E

8       +

10     T The action for state 3 is reduce by production 6. We 

pop the F and state 3.  We push T and GOTO(8, T) 

= 10.



Tracing LR(0) parsing - an example (continued)

0       $

1       E

The action for state 10 is reduce by production 2.  We 

pop the T (and state10), the + (and state8) and the E 

(and state1).  We push the E and GOTO(0,E) = 1.

0       $

1       E

12     $
The action for state 1 is shift.  We push the $ and 

GOTO (1,E) = 12 onto the stack.

The action for state 12 is accept.  The only item on 

the stack (excluding the $s) is E, which is the start 

symbol in our expression grammar

YACC and Bison

• YACC (Yet Another Compiler Compiler) is 

a program that automatically generates a 

parser based on specifications written in a 

syntax similar to BNF.

• Bison is its GNU equivalent.



YACC Format

%{/* code to insert at beginning of the parser

}%

/* Other YACC definitions, if necessary */

%%

/* grammar and associated actions */

%%

/* auxiliary procedures */

YACC Specification of the Calculator

%{

#include <stdio.h>

}%

%%

command:expr ‘\n’ {printf(“The result is:%d\n”, 

$1);}

;

expr : expr ‘+’ term {$$ = $1 + $3; }

| term {$$ = $1; }

;

term : term ‘*’ factor {$$ = $1 * $3; } | 

factor {$$ = $1; }

;



factor: number {$$ = $1; }

| ‘(‘ expr ‘)’ { $$ = $2;}

;

number : number digit { $$ = 10 * $1 + $2; }

;

digit : ‘0’ { $$ = 0; }

| ‘1’ { $$ = 1; }

| ‘2’ { $$ = 2; }

| ‘3’ { $$ = 3; }

| ‘4’ { $$ = 4; }

| ‘5’ { $$ = 5; }

| ‘6’ { $$ = 6; }

| ‘7’ { $$ = 7; }

| ‘8’ { $$ = 8; }

| ‘9’ { $$ = 9; }

;

%%

main()

{
yyparse();

return(0);

}

int yylex(void)

{
static int done = 0;

int c;

if (done) return(0); /* stop parsing */

c = getchar();

if (c == ‘\n’)

/* next call will end parsing */

done = 1;

return(c);

}



int yyerror(char *s)

{

/* allows for print error message */

printf(“%s\n”, s);

}

Semantic Analysis

• Semantic analysis is the phase where the meaning 

of the syntactic constructs is recognized and 

synthesis of the object program is begun.

• While it is possible for the semantic analyzer to 

produce an object program, the end result of this 

phase is usually a language-independent, machine-

independent intermediate representation of the 

program.



Functions of the Semantic Analyzer

The most common functions of semantic analysis 

include:

• Symbol-Table Management

• Insertion of Implicit Information

• Error Detection

• Macro processing and Compile-Time Operations

Symbol-Table Management

• The symbol table is one of a translator’s 
central data structures.

• The symbol table hold data regarding every 
lexeme in a program, including keywords, 
operators, identifiers and literals.

• The data within the symbol table is 
assembled during the analysis phases of 
translation and used during the generation 
phases.



Insertion of Implicit Information

• Some information in the source program is 

implicit and must be made explicit, e.g., the 

type of variables declared by default in 

FORTRAN.

Error Detection

• All three analysis phases must be prepared 

to handle incorrect programs.

• Syntactic errors involve the incorrect use of 

grammatical constructs.

• Semantic errors involve cases where the 

semantics are in error, e.g., incompatible 

data types.



Macro processing and Compile-Time 

Operations

• A macro, its simplest form, is a piece of text that 

is inserted into a program where the appropriate 

macro call appears.  In more complex form, it may 

involve the replacement of formal parameters with 

their actual values.

• An example of compile –time operations is 

conditional compilation, where a segment of 

source code will include compiled depending on 

the validity of a test condition.

Synthesis of the Object Program

The final stages of the translation process 

involve  the generation of the object 

program.  This includes:

• Optimization

• Code Generation

• Linking and Loading



Optimization

• Optimization is improving the efficiency of an 

object program (execution time and/or storage 

requirements), usually by removing inefficiencies 

created by the automated translation process.

• Optimization may be local (confined to a small 

section of code which will always be executed as a 

unit) or global (tracing through the logical 

sequence of instructions)

An Example of Optimization

• The statement

A = B + C + D

• creates the intermediate code

– Temp1 = B + C

– Temp2  = Temp1 + d

– A = Temp2

which generates the object code

– Load B (Step a)

– Add C

– Store Temp1

– Load Temp1 (Step b)

– Add D

– Store Temp2

– Load Temp2 (Step c)

– Store A



Code Generation

• After the intermediate representation is 
optimized, object code is created based on 
this representation, usually in machine 
language.

• This object code may need optimization 
itself.

• The object code may be executable or may 
need linking.

Linking and Loading

• The various object modules must be 

combined into one executable program.

• References to external variables and 

procedures must be resolved and external 

procedures must be includes in the 

executable module..  This information is 

found in the loader table.



Bootstrapping

• It is common to write a compiler in the 
source language.

• Once the compiler is completed, it is used to 
translate itself into an executable program.  
This is known as bootstrapping.

• Frequently the first compilation of a 
compiler is done by hand due to the lack of 
a working compiler.

Diagnostic Compilers

• Production compilers usually concentrate on 
creating object code that can be executed 
efficiently.  Consequently, these compilers do not 
always offer error messages that are useful, 
especially to novice programmers.

• It was particularly popular in the 1960s to create 
compilers that could quickly translate programs 
and create compiler-time and runtime error 
messages that were particularly helpful to nove 
programmers.

• These diagnostic compilers include WATFOR and 
PL/C.


