
Software II: Principles of
Programming Languages

Lecture 3 – Formal Descriptions of a
Programming Language

Lexics vs. Syntax Vs. Semantics

• Lexics refers to issues regarding the
assembly of words that comprise a
statement.

• Syntax refers to issues regarding the
grammar of a statement.

• Semantics refers to issues regarding the
meaning of a statement.

Lexical Structure of
Programming Languages

• It was believed in the early days of
programming language development that it
was sufficient to be able specify the syntax
of a programming language. We now know
that this is not enough.

• This led to the development of context-free
grammars and Backus-Naur Form.

Programming Language Syntax

• Syntax is defined as “the arrangement of words
as elements in a sentence to show their
relationship.”

• Syntax provides a great deal of information that
we need to understand a program and to guide its
translation.

• Example
2 + 3 × 4 = 14 (not 20 – multiplication takes precedence)

Programming Language Semantics

• Semantics is defined as “the meaning of a
symbol or set of symbols.”

• This is equally important in translating a
programming correctly and may be more
difficult to express unambiguously.

Tokens

• The lexical structure of program consists of
sequence of characters that are assembled into
character strings called lexemes which have
directly related to tokens, the element of a
languages grammar to which they correspond.

• Tokens fall into several distinct categories:
– reserved words
– literals or constants
– special symbols such as < = +
– identifiers, such as x24, average, balance

Reserved Words and Standard Identifiers

• Reserved words serve a special purpose within the
syntax of a language; for this reason, they are
generally not allowed to be used as user-defined
identifiers.

• Reserved words are sometimes confused with
standard identifiers, which are identifiers defined
by the language, but serve no special syntactic
purpose.

• The standard data types are standard identifiers in
Pascal and Ada.

Free- and Fixed-Field Formats

• Fixed-field format is a holdover from the day of punch
cards
– A fixed field syntax uses the positioning within a line

to convey information.
– E g., FORTRAN, COBOL and RPG use fixed-field

formats.
– SNOBOL4 uses the first character on the line to

distinguish between statement labels, continuations and
comments

• Free-field formats allow program statements to be written
anywhere on a line without regard to position on the line or
to line breaks.

Delimiting Lexemes

• Most languages work with lexemes of differing
length; this could create problems.
– If the input is doif is the lexeme doif or are

there two lexemes do and if?
– The easiest way to handle this is to use the

principle of longest substring, i.e., the longest
possible string is the lexeme.

• As a result, we typically use white space as a
delimiter separating lexemes in a source file.

Scanning FORTRAN

• FORTRAN breaks many of the rules of lexical
analysis

• FORTRAN ignores white space, which leads to:
DO 99 I = 1, 10
vs
DO 99 I = 1.10

• FORTRAN allows keywords to be defined as
variables:
IF = 2
IF (IF.LT.0) IF = IF + 1
ELSE IF = IF + 2

Regular Expressions

• The lexemes of a programming languages are
described formally by the use of regular
expressions, where there are 3 operations,
concatentation, repetition and selection:

– a|b denotes a or b.

– ab denotes a followed by b

– (ab)* denotes a followed by b zero or more times

– (a|b)c denotes a or b followed by c

Extending Regular Expressions
• There are other operators that we can add to

regular expression notations that make them easier
to write:
[a-z] any character from a through z
r+ one or more occurrences of r
? An optional term
. Any one character

• Examples
[0-9]+ describes an integer
[0-9]+(\.[0-9]+)? describes an unsigned real

What Is A Grammar?

The grammar of a language is expressed formally as
G = (T, N, S, P) where
T is a set of terminals (the basic, atomic symbols of a
language).
N is a set of nonterminals (symbols which denote
particular arrangements of terminals).
S is the start symbol (a special nonterminal which denotes
the program as a whole).
P is the set of productions (rules showing how terminals
and nonterminal can be arranged to form other
nonterminals.

An Example Of A Grammar?

• We can describe the manner in which
sentences in English are composed:
1. sentence → noun-phrase verb-phrase .
2. noun-phrase → article noun
3. article → a | the
4. noun → girl | dog
5. verb-phrase → verb noun-phrase
6. verb → sees | pets

Start
symbol

Non-
terminals

Terminals

Parsing A Sentence

• Let’s examine the sentence “the girl sees a dog.
sentence ⇒ noun-phrase verb-phrase . (Rule 1)
sentence ⇒ article noun verb-phrase . (Rule 2)
sentence ⇒ the noun verb-phrase . (Rule 3)
sentence ⇒ the girl verb-phrase . (Rule 4)
sentence ⇒ the girl verb noun-phrase . (Rule 5)
sentence ⇒ the girl sees noun-phrase . (Rule 6)
sentence ⇒ the girl sees article noun . (Rule 2)
sentence ⇒ the girl sees a noun . (Rule 3)
sentence ⇒ the girl sees a dog . (Rule 3)

Context –Free Grammars and
BNFs

• Context-Free grammars are grammars
where non-terminals (collections of tokens
in a language) always are deconstructed the
same way, regardless of the context in
which they are used.

• BNF (Backus-Naur form) is the standard
notation or metalanguage used to specify
the grammar of the language.

Backus-Naur Form

BNF (Backus-Naur Form) is a metalanguage for
describing a context-free grammar.

• The symbol ::= (or ?) is used for may derive.
• The symbol | separates alternative strings on the

right-hand side.
Example E ::= E + T | T

T ::= T * F | F
F ::= id | constant | (E)

where E is Expression , T is Term , and F is Factor

Syntax

• We can use BNF to specify the syntax of a programming
language, and determine if we have a syntactically correct
program.

• Syntactic correctness does not mean that a program is
semantically correct. We could write:
The home/ ran/ girl
and recognize that this is nonsensical even if the grammar

is correct.
• A language is a set of finite- length strings with characters

chosen from the language’s alphabet.
– This includes the set of all programs written in <fill in

you favorite programming language> .

Grammar For Simple Assignment Statements

<assignment statement> ::= <variable> = <arithmetic expression>

<arithmetic expression> ::=<term> | <arithmetic expression> + <term> |
<arithmetic expression> - <term>

<term> ::= <primary> | <term> × <primary> | <term> / <primary>

<primary> ::= <variable> | <number> | (<arithmetic expression>)

<variable> ::= <identifier> | <identifier> [<subscript list>]

<subscript list> ::= <arithmetic expression> | <subscript list>, <arithmetic
expression>

Generating Strings

• To generate strings that belong to our language,
we use a single-replacement rule: the generation of
strings in our language all begin with a single
symbol which we replace with the right-hand side
of a production:

• S → SS | (S) | ()
• We can generate the string: (() ())

S ⇒(S) ⇒ (S S) ⇒ (() S) ⇒ (() ())

sentential forms

Parse Tree For (()())

S

S

S

S()

() ()

Parse Tree for “The girl sees a dog”

sentence

noun-phrase verb-phrase .

article noun

the girl

verb noun-phrase

sees
article noun

a dog

Parse Tree for an Assignment Statement

<assignment statement>

=<variable>

<identifier>

W

<arithmetic expression>

<term>

<term>

<primary>

<variable>

<identifier>

Y

×
<primary>

<arithmetic expression>()

<arithmetic expression> + <term>

<primary>

<variable>

<identifier>

V

<term>

<primary>

<variable>

<identifier>

U
terminals

nonterminals

Using BNF To Specify Regular Expressions

• We can also use BNF to specify how we
assemble the words that comprise our
language:
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8
| 9

<unsigned integer> ::= <digit> | <unsigned
integer> <digit>

• These strings are much simple that the ones
that comprise programs and are called
regular expressions.

Example - Another Expression Grammar

• Let’s take a look at another simple
expression grammar:
E → E + T | T
T → T * F | T
F → (E) | number

• Let’s parse the expressions 3 + 4 + 5 and
3 + (4 + 5)

Expression Parse Trees

E

E T+

E T+

T

number

E

E T+

()

+

T

number

E

number

E

E T+

E T+

T

number

F

F

number

number TE

number

T

Abstract Syntax Trees for Expression

+

+number

number

+
+

number number

number

number

Parsing 3 + 4 * 5
E

E T+

T FT

number

*

number

number

F F

Parsing (3 + 4) * 5
E

T

FT

number

number

F

()E

+E T

number

F

T

*

F

Parse Tree For If-Then-Else

if-statement

expression statement statementif)(else

if-statement → if (expression) statement else statement

Abstract Syntax Tree For If-Then-Else

if-statement

expression statement statement

if-statement → if (expression) statement else statement

Extended Backus-Naur Form
EBNF (Extended Backus-Naur Form) adds a few

additional metasymbols whose main advantage is
replacing recursion with iteration.

• {a} means that a is occur zero or more times.
• [a] means that a appears once or not at all.
Example Our expression grammar can become:

E ::= T { + T }
T ::= F { * F }
F ::= id | constant | (E)

Left and right derivations

Remember our grammar: S ::= A B c

A ::= a A | b

B ::= A b | a

How do we parse the string abbbc?
S

A B c

a A

S

A B c

A bLeft derivation
Right derivation

Ambiguity

• Any grammar that accurately describes the
language is equally valid.

• Sometimes, there may be more than one way to
parse a program correctly. If this is the case, the
grammar is said to be ambiguous.

• They /are flying / planes.
They are/ flying planes.

• Ambiguity (which is NOT desirable) is usually a
property of the grammar and not of the language
itself.

Ambiguous grammars

• While there may be an infinite number of
grammars that describe a given language,
their parse trees may be very different.

• A grammar capable of producing two
different parse trees for the same sentence is
called ambiguous. Ambiguous grammars
are highly undesireable.

Is it IF-THEN or IF-THEN-ELSE?

The IF-THEN=ELSE ambiguity is a classical example of
an ambiguous grammar.

Statement ::= if Expression then Statement else Statement
| if Expression then Statement

How would you parse the following string?
IF x > 0

THEN IF y > 0
THEN z := x + y
ELSE z := x;

Is it IF-THEN or IF-THEN-ELSE? (continued)

There are two possible parse trees:
Statement

if Expression then Statement

if Expression then Statement else Statement

Statement

if Expression then Statement else Statement

if Expression then Statement

Is it IF-THEN or IF-THEN-ELSE? (continued)

Statement ::= if Expression then Statement ElseClause

ElseClause ::= else Statement | ε

Statement

if Expression then Statement ElseClause

if Expression then Statement ElseClause

else Statement

ε

Ambiguous Languages

• If every grammar in a language is
ambiguous, we say that the language is
inherently ambiguous.

• If we have two grammars:
G1: S → SS | 0 | 1
G2: T → 0T | 1T | 0 | 1
G1 is ambiguous; G2 is not; therefore the

language is NOT inherently ambiguous

Ambiguity in Grammars

S

S S

S S

0 0 1

S

S S

S S

0 0 1

G1 : Ambiguous Grammar

T

T

T

0 10

G2: Unambiguous
Grammar

Syntax Charts for Simple Assignment Statements

variable arithmetic expression

assignment
statement

term

=

+

-

arithmetic expression

Syntax Charts for Simple Assignment Statements (continued)

identifier [subscript list]
variable

arithmetic expression
subscript list

,

Syntax Charts for Simple Assignment Statements (continued)

primary

×

/

term

Syntax Charts for Simple Assignment Statements (continued)

variable

number

arithmetic expression()

primary

What is an Attribute Grammar?

• An attribute grammar is an extension to a context- free
grammar that is used to describe features of a
programming language that cannot be described in BNF or
can only be described in BNF with great difficulty.

• Examples
– Describing the rule that float variables can be assigned

integer values but the reverse is not true is difficult to
describe complete in BNF.

– The rule requiring that all variable must be declared
before being used is impossible to describe in BNF.

Static vs. Dynamic Semantics

• The static semantics of a language is indirectly
related to the meaning of programs during
execution. Its names comes from the fact that
these specifications can be checked at compile
time.

• Dynamic semantics refers to meaning of
expressions, statements and other program units.
Unlike static semantics, these cannot be checked
at runtime and can only be checked at runtime.

What is an Attribute?

• An attribute is a property whose value is assigned
to a grammar symbol.

• Attribute computation functions (or semantic
functions) are associated with the productions of a
grammar and are used to compute the values of an
attribute.

• Predicate functions state some of the syntax and
static semantics rules of the grammar.

Definition of an Attribute Grammar

An attribute grammar is a grammar with the following added
features:

• Each symbol X has a set of attributes A(X).
• A(X) has two disjoint subsets:

– S(X), synthesized attributes, which are passed up the
parse tree

– I(X), inherited attributes which are passed down the
parse tree

• Each production of the grammar has a set of semantic
functions and a set of predicate functions (which may be
an empty set).

• Intrinsic attributes are synthesized attributes who
properties are found outside the grammar (e.g., symbol
table)

An Attribute Grammar for Assignments

• Syntax rule: <assign> → <var> = <expr>
Semantic rule: <expr>.expected_type ← <var>.actual_type

• Syntax rule: <expr> →<var>[2]+ <var>[3]
Semantic rule: <expr>.actual_type ← if (<var>[2].actual_type = int)

and if (<var>[3].actual_type = int) then int else real
end if

Predicate: <expr>.actual_type = <expr>.expected_type
• Syntax rule: <expr> →<var>

Semantic rule: <expr>.actual_type ← <var>.actual_type
Predicate: <expr>.actual_type = <expr>.expected_type

4. Syntax rule: <var> A | B | C
Semantic rule: <var>actual_type ← loop-up(<var>.string)

Parse Tree for A = A + B

<assign>

<expr><var> =

+ <var>[3]<var>[2]

A A B

Derivation of Attributes

<assign>

<expr><var> =

+ <var>[3]<var>[2]

A A B

actual_type

expected_type

actual_type

actual_type

actual_type

Fully Attributed Parse Tree

<assign>

<expr><var> =

+ <var>[3]<var>[2]

A A B

expected_type = real
actual_type = real

expected_type

expected_type = real
actual_type = real

actual_type = int

expected_type = real
actual_type = real

