
Software II: Principles of

Programming Languages

Lecture 2 – A History of

Programming Languages

What is a Programming Language?

• A programming language describes
computation to be performed by computers.

• Programming languages have a history that
parallels the development of computers and
a history that is independent of computer
development.

– Konrad’s Zuse’s Plankalkül

– Alonzo Church’s lambda calculus

Programming Languages Describe

Algorithms

• The need to describe calculations is ancient:
A cistern.

The length equals the height.

A certain volume of dirt has been excavated.

The cross-sectional area plus this volume comes to 120.

The length is 5. What is the width?

Add 1 to 5, giving 6.

Divide 6 into 120, obtaining 20.

Divide 5 into 20, obtaining the width, 4.

This is the procedure.

• Why does this work?

The Math Behind the Description

Volume + Cross-section

= L W H + L W

= L2 W + L W

= L W (L + 1)

= 5 W (5 + 1)

= 5 W (6) = 120

Early History – The First

Programmer

• The First Stored-Program Computer to be

designed was Charles Babbage’s Analytical

Engine (the store-program computer to be

completed was the UNIVAC in 1951).

• The first computer program to be written

was by Babbage’s collaborator Ada,

Countess of Lovelace in the 1840s.

Zuse’s Plankalkül

• Designed in 1945, but not published until

1972

– Never implemented

– Advanced data structures

– Data types included floating point, arrays,

records

• Invariants – expressions that would be true

during execution at the points in the code

where they would appear

Plankalkül Syntax

• An assignment statement to assign the

expression A[4] + 1 to A[5]

| A + 1 => A

V | 4 5 (subscripts)

S | 1.n 1.n (data type n-bit integers)

The 1950s - The First

Programming Languages

Originally, all programming was done using the

machine’s own language, i.e., the binary code

native to the CPU.

• This led to many mistakes which took a great deal

of time to locate and correct.

• Eventually, programmers started using symbolic

names for opcodes and operands to make it easier

to program and then they would hand-translate.

The First Programming Languages

(continued)

• Eventually, assemblers were written to automate

the translations of these symbolic programs into

machine language.

• The success of assembly languages encouraged

computer scientists to develop higher-level

languages which could further simplify the

programming process.

Numerically-Based Languages

• Many of the earliest computers were used almost

exclusively for scientific calculations and

consequently many of the earliest attempts at

languages were for scientific purposes.

• Mauchly’s Short Code, Grace Murray Hopper’s

A-0 and John Backus’s Speedcoding were

designed to compile simple arithmetic

expressions.

FORTRAN

• John Backus’s team at IBM developed FORTRAN

(for FORmula TRANslator) in 1955-1957.

• While FORTRAN was designed for numerical

computation, it included control structures,

conditions and input/output.

• FORTRAN’s popularity led to FORTRAN II in

1958, FORTRAN IV in 1962, leading to its

standardization in 1966, with revised standards

coming out in 1977 and 1990.

A Program In FORTRAN
C FORTRAN EXAMPLE PROGRAM

C INPUT: AN INTEGER, LIST_LEN, WHERE LIST_LEN IS LESS

C THAN 100, FOLLOWS BY LIST_LEN-INTEGER VALUES

C OUTPUT: THE NUMBER OF INPUT VALUES THAT ARE GREATER

C THAN THE AVERAGE OF ALL INPUT VALUES

DIMENSION INTLST(99)

IMPLICIT INTEGER(A, C, R, S)

RESULT = 0

SUM = 0

READ(5,501) LSTLEN

501 FORMAT(I3)

IF (LSTLEN) 106, 106, 101

IF (LSTLEN - 100) 101, 106, 106

101 CONTINUE

C READ INPUT DATA INTO AN ARRAY AND COMPUTE ITS SUM

DO 102 COUNTR = 1, LSTLEN

READ(5,502) INTLST(COUNTR)

502 FORMAT(I4)

SUM = SUM + INTLST(COUNTR)

102 CONTINUE

C COMPUTE THE AVERAGE

AVERGE = SUM / LSTLEN

C COUNT THE VALUES THAT ARE GREATER THAN THE AVERAGE

DO 103 COUNTR = 1, LSTLEN

IF (INTLST(COUNTR) - AVERGE)103, 103, 104

104 CONTINUE

RESULT = RESULT + 1

103 CONTINUE

C PRINT THE RESULT

WRITE(6,503) RESULT

503 FORMAT(33H NUMBER OF VALUES .GT. AVERAGE IS, I2)

106 CONTINUE

WRITE(6,504)

504 FORMAT(39H ERROR - LIST LENGTH VALUE IS NOT,

1 6H LEGAL)

RETURN

END

A Program in FORTRAN IV

C FORTRAN EXAMPLE PROGRAM

C INPUT: AN INTEGER, LISTLEN, WHERE LISTLEN IS LESS

C THAN 100, FOLLOWS BY LISTLEN-INTEGER VALUES

C OUTPUT: THE NUMBER OF INPUT VALUES THAT ARE GREATER

C THAN THE AVERAGE OF ALL INPUT VALUES

INTEGER INTLST(99)

INTEGER LSTLEN, COUNTR, SUM, AVERGE, RESULT

RESULT = 0

SUM = 0

READ(*,*) LSTLEN

IF ((LSTLEN .LE. 0) .OR. (LSTLEN .GE. 100))

1 GOTO 104

C READ INPUT DATA INTO AN ARRAY AND COMPUTE ITS SUM

DO 101 COUNTR = 1, LSTLEN

READ(*,*) INTLST(COUNTR)

SUM = SUM + INTLST(COUNTR)

101 CONTINUE

C COMPUTE THE AVERAGE

AVERGE = SUM / LSTLEN

C COUNT THE VALUES THAT ARE GREATER THAN THE AVERAGE

DO 102 COUNTR = 1, LSTLEN

IF (INTLST(COUNTR) .LE. AVERGE) GOTO 103

RESULT = RESULT + 1

103 CONTINUE

102 CONTINUE

C PRINT THE RESULT

WRITE(6,*) 'NUMBER OF VALUE .GT. AVERAGE IS',

1 RESULT

104 CONTINUE

WRITE(6,*) 'ERROR - LIST LENGTH VALUE IS NOT’,

1 ‘LEGAL’

RETURN

END

A Program in FORTRAN 77

Program Example

C Fortran Example program

C Input: An integer, ListLen, where ListLen is less

C than 100, follows by List_Len-Integer values

C Output: The number of input values that are greater

C than the average of all input values

INTEGER INTLIST(99)

INTEGER LISTLEN, COUNTER, SUM, AVERAGE, RESULT

RESULT = 0

SUM = 0

READ *, LISTLEN

IF ((LISTLEN .GT. 0) .AND. (LISTLEN .LT. 100)) THEN

C Read Input data into an array and compute its sum

DO 101 COUNTER = 1, LISTLEN

READ *, INTLIST(COUNTER)

SUM = SUM + INTLIST(COUNTER)

101 CONTINUE

C Compute the average

AVERAGE = SUM / LISTLEN

C Count the values that are greater than the average

DO 102 COUNTER = 1, LISTLEN

IF (INTLIST(COUNTER) .GT. AVERAGE) THEN

RESULT = RESULT + 1

ENDIF

102 CONTINUE

C Print the result

PRINT *, 'Number of value .GT. Average is', Result

ELSE

PRINT *, 'Error - list length value is not legal’

ENDIF

END

A Program in Fortran 95

Program Example

! Fortran Example program

! Input: An integer, List_Len, where List_Len

! is less than 100, follows by

! List_Len-Integer values

! Output: The number of input values that are

! greater than the average of all input

! values

Implicit none

Integer :: Int_List(99)

Integer :: List_Len, Counter, Sum, Average,
Result

Result = 0

Sum = 0

Read *, List_Len

If ((List_Len > 0) .AND. (List_Len < 100)) Then

! Read Input data into an array and compute its

! sum

Do Counter = 1, List_Len

Read *, Int_List(Counter)

Sum = Sum + Int_List(Counter)

End Do

! Compute the average

Average = Sum / List_Len

! Count the values that are greater than the

! average

Do Counter = 1, List_Len

If (Int_List(Counter) > Average) Then

Result = Result + 1

End If

End Do

! Print the result

Print *, 'Number of value > Average is', Result

Else

Print *, 'Error - list length value is not legal’

End If

End Program Example

ALGOL

• FORTRAN’s success led to fear that IBM would

dominate the computer industry.

• GAMM and ACM organized committees to

design a universal language which merged and

developed ALGOL 58 (which led to ALGOL 60

and ALGOL 62).

• Many later languages are derivatives of

ALGOL, including PL/I, C, Pascal and Ada.

Design of ALGOL

FORTRAN had been designed to run efficiently on
an IBM 701; ALGOL had been designed to meet
four different goals:

– ALGOL notation should be close to standard
mathematics

– ALGOL should be useful in describing
algorithms

– Programs in ALGOL should be compilable
into machine language.

– ALGOL should not be tied to a single
computer architecture.

Influence of ALGOL

• While ALGOL saw limited use in the US

(and only some in Europe), it made many

contributions to other languages:

– Backus and Naur developed the notation still

used to express language syntax (BNF), based

on Chomsky’s context-free language concept.

– Burrough’s use of Lukasiwiez’s notation for

writing expressions (prefix notation) led to the

use of stack-based architectures.

ALGOL-60: Example

procedure Absmax(a) Size:(n, m) Result:(y)

Subscripts:(i, k);

value n, m; array a; integer n, m, i, k;

real y;

comment The absolute greatest element of the

matrix a, of size n by m is transferred

to y, and the subscripts of this element

to i and k;

begin

integer p, q;

y := 0; i := k := 1;

for p:=1 step 1 until n do

for q:=1 step 1 until m do

if abs(a[p, q]) > y then

begin y := abs(a[p, q]);

i := p; k := q

end

end Absmax

COBOL

• Commercial data processing was one of the
earliest commercial applications of computers.

• The U.S. Defense Dept. sponsored the effort to
develop COBOL (Common Business-Oriented
Language), which was standardized in 1960,
revised in 1961 & 1962, re-standarized in 1968,
1974, and 1984.

• As of 2000, more lines of source code have been
written in COBOL than any other programming
language.

Influence of COBOL

• Its popularity is due to:

– self-documenting style (very English-like)

– its record structure makes it easy to organize

data

– its PICTURE clauses made it easy to format

input and output in different ways.

• COBOL has been a major influence on most

database manipulation languages.

A Program in COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. PRODUCE-REORDER-LISTING.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. DEC-VAX.

OBJECT-COMPUTER. DEC-VAX.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT BAL-FWD-FILE ASSIGN TO READER.

SELECT REORDER-LISTING

ASSIGN TO LOCAL-PRINTER.

DATA DIVISION.

FD BAL-FWD-FILE

LABEL RECORDS ARE STANDARD.

RECORD CONTAINS 80 CHARACTERS.

01 BAL-FWD-CARD.

05 BAL-ITEM-NO PICTURE IS 9(5).

05 BAL-ITEM-DESC PICTURE IS X(20).

05 FILLER PICTURE IS X(5).

05 BAL-UNIT-PRICE PICTURE IS 999V99.

05 BAL-REORDER-POINT PICTURE IS 9(5).

05 BAL-ON-HAND PICTURE IS 9(5).

05 BAL-ON-ORDER PICTURE IS 9(5).

05 FILLER PICTURE IS X(30).

FD REORDER-LISTING

LABEL RECORDS ARE STANDARD.

RECORD CONTAINS 80 CHARACTERS.

01 REORDER-LINE.

05 RL-ITEM-NO PICTURE IS Z(5).

0F FILLER PICTURE IS X(5).

05 RL-ITEM-DESC PICTURE IS X(20).

05 FILLER PICTURE IS X(5).

05 RL-UNIT-PRICE PICTURE IS ZZZ.99.

05 FILLER PICTURE IS X(5).

05 RL-AVAILABLE-STOCK PICTURE IS Z(5).

05 FILLER PICTURE IS X(5).

05 RL-REORDER-POINT PICTURE IS Z(5).

05 FILLER PICTURE IS X(71).

WORKING-STORAGE SECTION.

01 SWITCHES.

05 CARD-EOF-SWITCH PICTURE X.

01 WORK-FIELDS.

05 AVAILABLE-STOCK PICTURE 9(5).

PROCEDURE DIVISION.

1000-PRODUCE-REORDER-LISTING.

OPEN INPUT BAL-FWD-FILE.

OPEN OUTPUT REORDER-LISTING.

MOVE "N" TO CARD-EOF-SWITCH.

PERFORM 1100-PRODUCE-REORDER-LINE

UNTIL CARD-EOF-SWITCH IS EQUAL TO "Y".

CLOSE BAL-FWD-FILE

CLOSE REORDER-LISTING.

STOP RUN.

1100-PRODUCE REORDER-LINE.

PERFORM 1110-READ-INVENTORY-RECORD.

IF CARD-EOF-SWITCH IS NOT EQUAL TO "Y"

PERFORM 1120-CALCULATE-AVAILABLE-STOCK

IF AVAILABLE-STOCK IS LESS THAN

BAL-REORDER-POINT

PERFORM 1130-PRINT-REORDER-LINE.

1110-READ-INVENTORY-RECORD.

READ BAL-FWD-FILE RECORD

AT END

MOVE "Y" TO CARD-EOF-SWITCH.

1120-CALCULATE-AVAILABLE-STOCK.

ADD BAL-ON-HAND BAL-ON-ORDER

GIVING AVAILABLE-STOCK.

1130 PRINT-REORDER-LINE.

MOVE SPACE TO REORDER-LINE.

MOVE BAL-ITEM-NO TO RL-ITEM-NO.

MOVE BAL-ITEM-DESC TO RL-ITEM-DESC.

MOVE BAL-UNIT-PRICE TO RL-UNIT-PRICE.

MOVE AVAILABLE-STOCK TO RL-AVAILABLE-STOCK.

MOVE BAL-REORDER POINT TO RL-REORDER-POINT

WRITE REORDER-LINE.

LISP

• John McCarthy of MIT developed LISP (LISt Processor)
in the late 1950s to handle list structures in a functional
format.

• Only two data types: atoms and lists

• The language pioneered garbage collection and recursive
procedures; its dialects include Scheme.

• Because it is not an imperative language, it does not run as
efficiently on standard computer architectures. However,
there are computer architectures designed for it on which
they run more efficiently.

• Many major AI programs have been written in LISP.

APL

• APL (A Programming Language) was

designed by Ken Iverson to handle

scientific computations, especially those

involves vectors and matrices.

• It has a large set of operators and requires a

special character set and is extremely

difficult to read.

APL Keyboard Layout

Sample APL Program

(~R∊∊∊∊R∘∘∘∘.×R)/R←1↓⍳⍳⍳⍳R

Executed from right to left, this means:

• ιR creates a vector containing integers from 1 to R

– (if R = 6 at the beginning of the program, ιR is 1 2 3 4 5 6)

• Drop first element of this vector (↓ function), i.e. 1. So

1↓ιR is 2 3 4 5 6

• Set R to the new vector (←, assignment primitive), i.e. 2 3

4 5 6

• Generate outer product of R multiplied by R, i.e. a matrix

that is the multiplication table of R by R (°.× function), i.e.

• Build a vector the same length as R with 1 in each place

where the corresponding number in R is in the outer

product matrix (∈, set inclusion function), i.e. 0 0 1 0 1

• Logically negate the values in the vector (change zeros to

ones and ones to zeros) (∼, negation function), i.e. 1 1 0 1

0

• Select the items in R for which the corresponding element

is 1 (/ function), i.e. 2 3 5

The 1960s – An Explosion of

Programming Languages

• The 1960s saw the development of
hundreds of programming languages, many
of them special-purpose languages (for
tasks such as graphics and report
generation)

• Other efforts went into developing a
“universal programming language” that
would be suitable for all programming
tasks.

PL/I

• IBM developed NPL for its 360 computers
(renaming NPPL and later PL/I).

• PL/I used an ALGOL-style syntax and
combined featured of both FORTRAN and
COBOL.

• PL/I was a complex language that saw some
commercial success and its subset PL/C saw
some success as a teaching language in the
1970s.

A Program in PL/I

/* PL/I PROGRAM EXAMPLE

INPUT: AN INTEGER, LISTLEN, WHERE LISTLEN IS LESS THAN

100, FOLLOWED BY LISTLEN-INTEGER VALUES

OUTPUT:THE NUMBER OF INPUT VALUES THAT ARE GREATER

THAN THE AVERAGE OF ALL INPUT VALUES */

PLIEX: PROCEDURE OPTIONS(MAIN);

DECLARE INTLIST(1:99) FIXED;

DCL (LISTLEN, COUNTER, SUM, AVERAGE, RESULT) FIXED;

RESULT = 0

SUM = 0

GET LIST (LISTLEN);

IF (LISTLEN > 0 & LISTLEN< 100) THEN DO;

/*READ INPUT DATA INTO AN ARRAY AND COMPUTE ITS SUM
*/

DO COUNTER = 1 TO LISTLEN;

GET LIST (INTLIST(COUNTER));

SUM = SUM + INTLIST(COUNTER);

END;

/* COMPUTE THE AVERAGE */

AVERAGE = SUM / LISTLEN

/* COUNT THE VALUES THAT ARE GREATER THAN

THE AVERAGE */

DO COUNTER = 1 TO LISTLEN;

IF (INTLIST(COUNTER) > AVERAGE) THEN

RESULT = RESULT + 1;

END;

/* PRINT THE RESULT */

PUT SKIP LIST ('NUMBER OF VALUES > AVERAGE IS');

PUT LIST (RESULT);

ELSE

PUT SKIP LIST('ERROR - LIST LENGTH VALUE IS NOT’

‘ LEGAL');

END PLIEX;

Successes and Failures of PL/I

• The PL/I language was so complex that its
compiler was huge and slow and the
executable code that it created was also
huge and slow.

• Because of its complexity, PL/I was a
difficult language to master.

• PL/I included some concepts that were
ahead of its time, such as exception
handling.

SNOBOL

• SNOBOL (String Oriented Symbolic

Language) was develop by R. Griswold at

AT&T Bell Labs.

• SNOBOL was the first string-processing

language and SNOBOL4 included powerful

pattern-matching capabilities.

Simula

• Simula67 was created by Kristen Nygaard

and Ole-Johan Dahl at the Norwegian

Computing Center in 1965-1967.

• It was designed for computer simulation

and introduced to concept of the class, the

basis behind object-orientation.

BASIC

• John Kemeny and Thomas Kurtz originally

developed BASIC as a language to teach

beginning students how to program in a

more user-friendly environment.

• BASIC’s original design was most heavily

influenced by FORTRAN but was later

expanded to include many other features.

The 1970s – Simplicity, Abstraction,

Study

• Most of the new programming languages are
characterized by a move toward simplicity and
consistency.

• Developments included Pascal and C. Both
languages became extremely popular although
adding few new concepts.

• The desire to add mechanisms for data abstraction,
concurrency and verification led to the
development of languages such as CLU, Euclid
and Mesa.

Pascal

• Niklaus Wirth and C. A. R. Hoare developed

ALGOL-W and later Pascal, which had a

simplified structure.

• Pascal’s structure made it a great teaching

langauge and a popular language for describing

algorithms.

• There were several important features that it

lacked including string processing, separate

compilation, practical I/O facilities.

C

• Dennis Ritchie of AT&T Bell Labs created C

based on earlier languages BCPL and B to use it in

writing a revised version of UNIX.

• C is based heavily around the idea of an

expression and allows easy conversion between its

data types.

• It is regarded as a “middle-level” programming

language.

Experiments In Abstraction,

Concurrency and Verification

• The most notable attempts to introduce data
abstraction, concurrency and verification to
programming languages include:

– CLU – designed at MIT to provide a consistent
approach to abstraction mechanism.

– Euclid – a Pascal derivative that includes
abstract data types whose goal was formal
verification of programs.

– Mesa – a Pascal-like language with a module
facility, exception handling and mechanisms for
concurrency.

The 1980s – New Directions and the

Rise of Object-Orientation

• The 1980s began with attempts to introduce ADT

mechanisms (Ada and Modula-2).

• The most significant advance in programming

languages during the 1980s was the rise of object

orientation (Smalltalk and C++).

• Lastly, there was renewed interest in functional

and procedural languages (Scheme, ML, FP and

Prolog).

Ada

• Ada was designed in 1980 and standardized

in 1983 by J. Ichbiah.

• It includes mechanisms of ADT (the

package) and concurrency (the task).

• Because of the language’s complexity, Ada

has been frequently described as “the PL/I

of the ’80s.”

A Program in Ada

-- Ada Example Program

-- Input: An integer, List_Len, where List_Len is

-- less than 100, followed by List_Len-

-- integer values

-- Output:The number of input values that are

-- greater than the average of all input

-- values

with Ada.Text_IO, Ada.Integer.Text_IO;

use Ada.Text_IO, Ada.Integer.Text_IO;

procedure Ada_Ex is

type Int_List_Type s array (1..99) of Integer;

Int_List : Int_List_Type;

List_Len, Sum, Average, Result : Integer;

begin

Result := 0;

Sum := 0;

Get (List_Len);

if (List_Len > 0) and (List_Len < 100) then

-- Read input data into an array and compute its

-- sum

for Counter := 1 .. List_Len loop

Get Int_List(Counter)):

Sum = Sum + Int_List(Counter);

end loop;

-- Compute the average

Average = Sum / List_Len;

-- Count the values that are greater than the

-- average

for Counter := 1 .. List_Len loop

if Int_List(Counter) > Average then

Result := Result + 1;

end if;

end loop;

-- Print the result

Put ("The number of values > average is");

Put (Result);

New_Line;

else

Put_Line("Error - list length value is not”,

“ legal");

end if;

end Ada_Ex;

Modula-2

• Modula-2 was more modest in design,

expanding the features of Pascal to include

modules (similar to Ada’s packages) and a

limited form of concurrency called

coroutines.

• Because of its restrictive typing and the

popularity of Turbo Pascal and C, it never

became as popular as expected.

Smalltalk

• Smalltalk was developed at Xerox PARC by Alan

Kay et. al. and is considered the purest example of

an object-oriented language.

• Its limited success is dues largely to its being tied

to a computer and operating system that saw

limited success as well as an unusual notation and

inefficient implementation.

A Program in Smalltalk

"Smalltalk Example Program"

"The following is a class definition,

instantiations of which can draw equilateral

polygons of any number of sides"

class name Polygon

superclass Object

instance variable names ourPen

numSides

sideLength

"Class methods"

"Create an instance"

new

^ super new getPen

"Get a pen for drawing polygons"

getPen

ourPen <- Pen new defaultNib: 2

"Instance methods"

"Draw a polygon"

draw

numSides timeRepeat: [ourPen go: sideLength;

turn: 360 // numSides

"Set length of sides"

length: len

sideLength <- len

"Set number of sides"

sides: num

numSides <- num

C++

• C++ was developed by Bjarne Stroustrup of

AT&T Bell Labs beginning in 1980 as “C

with Classes.” It was finally standardized

in 1998.

• It is a complex language with no compiler

yet conforming entirely to the 1998

standard.

Functional Languages

• Scheme was actually developed in the late 1970s

but gained popularity in the 1980s due to Abelson

and Sussman’s book “Structure and

Implementation of Computer Programs.”

• ML (for Metalanguage) is a functional language

with a Pascal-like syntax.

• John Backus developed FP (Functional

Programming) that was heavily influenced by

APL.

Prolog

• Prolog is a declarative language developed

by Colmerauer, Roussel and Kowalski in

1972 based on predicate calculus and

mathematical logic.

• Prolog became popular in the 1980s

because it was useful in expert systems

development and the Japanese Fifth-

Generation Project.

The 1990s – Consolidation, the

Internet, Libraries and Scripting

• Programming language development in the

1990s was dominated by a few factors:

Java, scripting languages and greater focus

on libraries.

• Haskell, a purely functional language like

ML and Ada matured with the Haskell98

and Ada95 standards (which added OOP

and parallelism to Ada).

Java

• Java was developed by James Gosling of Sun

Microsystems for embedded systems.

• Its popularity is due to its relative simplicity,

portability, large library of windowing,

networking and concurrency utilities and (of

course) the World Wide Web.

• Java is a proprietary language with Sun

maintaining tight control over it.

Libraries

• In the past, libraries were frequently an

afterthought in the design of programming

languages.

• Increasingly, libraries are important to the

success of programming languages, e.g.,

– Java API

– C++ STL

Scripting Languages

• Scripting languages became increasingly popular
in the 1990s.

• A scripting language is a special-purpose language
which ties together utilities, library components
and operating systems commands into complete
programs.

• Examples include AWK, Perl, TCL, Javascript,
Rexx, and Python.

Scripting Languages for the Web

• Scripting languages that have become
popular (at least in part) because of the Web
include:
– Perl

– JavaScript

– PHP

– Python

– Ruby

– Lua

1-68

Perl

• Designed by Larry Wall—first released in 1987

• Variables are statically typed but implicitly
declared

• Three distinctive namespaces, denoted by the first
character of a variable’s name

• Powerful, but somewhat dangerous

• Gained widespread use for CGI programming on
the Web

• Also used for a replacement for UNIX system
administration language

JavaScript

• Began at Netscape, but later became a joint venture of
Netscape and Sun Microsystems

• A client-side HTML-embedded scripting language, often
used to create dynamic HTML documents

• Purely interpreted

• Related to Java only through similar syntax

1-70

PHP

• PHP: Hypertext Preprocessor, designed by
Rasmus Lerdorf

• A server-side HTML-embedded scripting
language, often used for form processing
and database access through the Web

• Purely interpreted

Python

• An OO interpreted scripting language

• Type checked but dynamically typed

• Used for CGI programming and form
processing

• Dynamically typed, but type checked

• Supports lists, tuples, and hashes

Ruby

• Designed in Japan by Yukihiro Matsumoto (a.k.a,

“Matz”)

• Began as a replacement for Perl and Python

• A pure object-oriented scripting language

- All data are objects

• Most operators are implemented as methods,

which can be redefined by user code

• Purely interpreted

Lua

• An OO interpreted scripting language

• Type checked but dynamically typed

• Used for CGI programming and form processing

• Dynamically typed, but type checked

• Supports lists, tuples, and hashes, all with its

single data structure, the table

• Easily extendable

The Flagship .NET Language: C#

• Part of the .NET development platform

(2000)

• Based on C++ , Java, and Delphi

• Includes pointers, delegates, properties,

enumeration types, a limited kind of

dynamic typing, and anonymous types

• Is evolving rapidly

Markup/Programming Hybrid

Languages

• These include

– XSLT (eXtensible Stylesheet Language

Transformation)

– JSP (Java Servlet Pages)

XSLT

• eXtensible Markup Language (XML): a
metamarkup language

• eXtensible Stylesheet Language
Transformation (XSTL) transforms XML
documents for display

• Programming constructs (e.g., looping)

JSP

• Java Server Pages: a collection of
technologies to support dynamic Web
documents

• JSTL, a JSP library, includes programming
constructs in the form of HTML elements

The Future

• The past demonstrated that it is extremely

difficult to predict the direction of future

programming language development.

