
CSC 272 - Software II: Principles

of Programming Languages

Lecture 1 - An Introduction

What is a Programming

Language?

• A programming language is a notational system

for describing computation in machine-readable

and human-readable form.

• Most of these forms are high-level languages,

which is the subject of the course.

• Assembly languages and other languages that are

designed to more closely resemble the computer’s

instruction set than anything that is human-

readable are low-level languages.

Why Study Programming Languages?

• In 1969, Sammet listed 120 programming

languages in common use – now there are many

more!

• Most programmers never use more than a few.

– Some limit their career’s to just one or two.

• The gain is in learning about their underlying

design concepts and how this affects their

implementation.

The Six Primary Reasons

• Increased ability to express ideas

• Improved background for choosing appropriate
languages

• Increased ability to learn new languages

• Better understanding of significance of
implementation

• Better use of languages that are already known

• Overall advancement of computing

Reason #1 - Increased ability to

express ideas

• The depth at which people can think is

heavily influenced by the expressive power

of their language.

• It is difficult for people to conceptualize

structures that they cannot describe,

verbally or in writing.

Expressing Ideas as Algorithms

• This includes a programmer’s to develop

effective algorithms

• Many languages provide features that can

waste computer time or lead programmers

to logic errors if used improperly

– E. g., recursion in Pascal, C, etc.

– E. g., GoTos in FORTRAN, etc.

Reason #2 - Improved background for
choosing appropriate languages

• Many professional programmers have a

limited formal education in computer

science, limited to a small number of

programming languages.

• They are more likely to use languages with

which they are most comfortable than the

most suitable one for a particular job.

Reason #3 - Increased ability to
learn new languages

• Computer science is a relatively young discipline

and most software technologies (design

methodology, software development, and

programming languages) are not yet mature.

Therefore, they are still evolving.

• A thorough understanding of programming

language design and implementation makes it

easier to learn new languages.

Learning a New Language

• It is easier to learn a new language if you

understand the underlying structures of

language.

Examples:

– It is easier for a BASIC program to FORTRAN than

C.

– It is easier for a C++ programmer to learn Java.

– It is easier for a Scheme programmer to learn LISP.

Tiobe

Index

Reason #4 - Better understanding of
significance of implementation

• It is often necessary to learn about language

implementation; it can lead to a better

understanding of why the language was

designed the way that it was.

• Fixing some bugs requires an understanding

of implementation issues.

Reason #5 - Better use of languages
that are already known

• To allow a better choice of programming

language

• Some languages are better for some jobs

than others.

– Example – FORTRAN and APL for

calculations, COBOL and RPG for report

generation, LISP and PROLOG for AI, etc.

Better Use of a Language

• To improve your use of existing

programming language

• By understanding how features are

implemented, you can make more efficient

use of them.

• Examples:

• Creating arrays, strings, lists, records.

• Using recursions, object classes, etc.

Reason #6 - Overall advancement
of computing

• Frequently, the most popular language may

not be the best language available.

• E.g., ALGOL 60 did NOT displace Fortran.

– They had difficulty understanding its

description and they didn’t see the significance

of its block structure and well-structured

control statements until many years later.

Programming Domains

• Scientific Applications

• Business Applications

• Artificial Intelligence

• Web Software

Numerically-Based Languages

• Many of the earliest computers were used

almost exclusively for scientific

calculations and consequently many of the

earliest attempts at languages were for

scientific purposes.

• Grace Murray Hopper’s A-0 and John

Backus’s Speedcoding ere designed to

compile simple arithmetic expressions.

FORTRAN

• John Backus’s team at IBM developed FORTRAN

(for FORmula TRANslator) in 1955-1957.

• While FORTRAN was designed for numerical

computation, it included control structures,

conditions and input/output.

• FORTRAN’s popularity led to FORTRAN II in

1958, FORTRAN IV in 1962, leading to its

standardization in 1966, with revised standards

coming out in 1977 and 1990.

Business Languages

• Commercial data processing was one of the
earliest commercial applications of computers.

• Grace Murray Hopper et. al. at Univac developed
FLOWMATIC, an English-like language for
business applications.

• The U.S. Defense Dept. sponsored the effort to
develop COBOL (Common Business-Oriented
Language), which was standardized in 1960,
revised in 1961 & 1962, re-standarized in 1968,
1974, and 1984.

Artificial Intelligence

• Artificial Intelligence deals with emulating
human-style reasoning on a computer.

• These applications usually involve symbolic
computation, where most of the symbols are
names and not numbers.

• The most common data structure is the list, not the
matrix or array as in scientific computing and not
the record as in business computing

• Artificial intelligence requires more flexibility
than other programming domains.

Artificial Intelligence Languages

• The first AI language was IPL (International Processing
Language, developed by the Rand Corporation. Its low-
level design led to its limited use.

• John McCarthy of MIT developed LIST for the IBM 704
(which eventually led to Scheme and Common LISP).
LISP is a recursion-oriented, list-processing language that
facilitated game-playing programs.

• Yngve of MIT developed COMIT, a string-processing
language, which was followed by AT&T’s SNOBOL.

• Prolog was developed by Colmerauer, Roussel and
Kowalski based on predicate calculus and mathematical
logic.

Systems Languages

• Assembly languages were used for a very

long time operating systems programming

because of its power and efficiency.

• CPL, BCPL, C and C++ were later

developed for this purpose.

• Other languages for systems programming

included PL/I, BLISS, and extended

ALGOL.

Web Software

• Eclectic collection of languages:

– Markup (e.g., HTML) – used for annotating a

document in a manner that can be distinguished

from the text.

– Scripting (e.g., PHP) - the language that enable

the script to run these commands and typically

include control structures such as if-then-else

and while-do.

– General-purpose (e.g., Java) – can be used for

a wide range of programming jobs.

Language Evaluation Criteria

• Readability – the ease with which

programs can be read and understood.

• Writability – the ease with which programs

can be developed for a given program

domain.

• Reliability – the extent to which a program

will perform according to its specifications.

What Do We Mean By Machine

Readability?
• A language is considered machine-readable if it

can be translated efficiently into a form that the
computer can execute.

• This requires that:

– A translation algorithm exists.

– The algorithm is not too complex.

• We can ensure machine readability by requiring
that programming languages be context-free
languages.

What Do We Mean By Human Readability?

• It is harder to define human readability in precise
terms.

• Generally this requires a programming language to
provide enough abstractions to to make the
algorithms clear to someone who is not familiar
with the program’s details.

• As programs gets larger, making a language
readable requires that the amount of detail is
reduced, so that changes in one part of a program
have a limited effect on other parts of the program.

What Contributes to Readability?

There are five characteristics of programming

languages that contribute to readability:

• Simplicity

• Orthogonality

• Control Statements

• Data types and Structures

• Syntax

Simplicity

• Programming languages with a large
number of basic components are harder to
learn; most programmers using these
languages tend to learn and use subsets of
the whole language.

• Complex languages have multiplicity (more
than one way to accomplish an operation).

• Overloading operators can reduce the clarity
of the program’s meaning

An Example of Multiplicity

• All of the following add one to the variable

count in C:

count = count + 1;

count += 1;

count++;

++count;

Do they mean the same thing?

Orthogonality

• For a programming language to be

orthogonal, language constructs should not

behave differently in different contexts.

• The fact that Modula-2’s constant

expressions may not include function calls

can be viewed as a nonorthogonality.

Examples of Nonorthogonalities

• Other examples of nonorthogonalities include:

– In Pascal functions can only return scalar

values or pointers.

– In C/C++, arrays types cannot be returned from

a function

– In C, local variables must be at the beginning of

a block.

– C passes ALL parameters by value except

arrays (passed by reference).

Example – IBM vs. VAX Assembler

• IBM Assembler
A Reg1, memory_cell ; Reg1 = Reg1 + memocell

AR Reg1, Reg2 ; Reg1 = Reg1 + Reg2

• VAX Assembler
ADDL operand1, operand2

Control Statements

• In the 1950s and 1960s, the goto was the

most common control mechanism in a

program; however, it could make programs

less readable.

• The introduction of while, for and if-

then-else eliminate the need for gotos

and led to more readable programs.

Data Types and Structures

• A more diverse set of data types and the ability of
programmers to create their own increased
program readability:

– Booleans make programs more readable:

TimeOut = 1 vs. TimeOut = True

– The use of records to store complex data objects makes
programs more readable:
CHARACTER*30 NAME(100)

INTEGER AGE(100), EMPLOYEE_NUM(100)

REAL SALARY(100)

Wouldn’t it better if these were an array of records
instead of 4 parallel arrays?

Syntax

• Most syntactic features in a programming
language can enhance readability:

– Identifier forms – older languages (like
FORTRAN) restrict the length of identifiers,
which become less meaningful

– Special words – in addition to while, do and
for, some languages use special words to close
structures such as endif and endwhile.

– Form and meaning – In C a static variable
within a function and outside a function mean
two different things – this is undesirable.

Writability

• Historically, writability was less important than efficiency

than efficiency. As computers have gotten faster, the

reverse has become true to a certain extent.

• Writability must be considered within the context of the

language’s target problem domain.

– E.g., COBOL handles report generating very well but

matrices poorly. The reverse is true for APL.

• A large and diverse set of construct is easier to misuse than

a smaller set of constructs that can be combined under a

consistent et of rules. (This is simple and orthogonal)

Writability and Abstraction

• A programming language should be able to

support data abstractions that a programmer

is likely to use in a given problem domain.

• Example – implementing binary trees in

FORTRAN, C++ and Java.

Reliability

• Reliability is the assurance that a program will not
behave in unexpected or disastrous ways during
execution.

• This sometimes requires the use of rules that are
extremely difficult to check at translation or
execution time.

– ALGOL68’s rule prohibiting dangling reference
assignments (referring to objects that have been de-
allocated).

• Reliability and efficiency of translation are
frequently diametrically opposed.

Contributing Factors To Reliability

• Type Checking – a large factor in program
reliability. Compile-time type checking is more
desireable. C’s lack of parameter type checking
leads to many reliability problems.

• Exception Handling – the ability to catch run-
time errors and make corrections can prevent
reliability problems.

• Aliasing – having two or more ways of
referencing the same data object can cause
unnecessary errors.

Cost of Use

• Cost of program execution

– A slower program is more expensive to run on a slower computer.

– In an era of faster, cheaper computer, this is less of a concern.

• Cost of program translation

– Optimizing compilers are slower than some other compilers

designed for student programs, which will not run as many times..

• Cost of program creation, testing and use

– How quickly can you get the program executing correctly.

• Cost of program maintenance

– How expensive will it be to modify the program when changes are

needed in subsequent years?

Influences on Language Design

Other factors have had a strong influence on

programming language design:

• Computer Architecture

• Programming Methodologies

Computer Architecture

• Most computers are still based on the von

Neumann architecture, which view memory as

holding both instructions and data interchangably.

• This has influenced the development of imperative

languages and has stifled the adaption of

functional languages.

• As parallel processing computers are developed,

there have been several attempts made to develop

languages that exploit their features.

Programming Methodologies

• New methods of program development have

led to advances in language design:

• These have included:

– structured programming languages

– data abstraction in object-oriented languages

Language Categories

• There are four different programming

language paradigms:

– Imperative

– Functional

– Declarative

– Object-Oriented

Imperative Languages

• Imperative languages are command-driven or statement-
oriented languages.

• The basic concept is the machine state (the set of all values
for all memory locations).

• A program consists if a sequence of statements and the
execution of each statement changes the machine state.

• Programs take the form:
statement1;

statement2;

… …

• FORTRAN, COBOL, C, Pascal, PL/I are all imperative
languages.

Functional Languages

• An functional programming language looks at the

function that the program represents rather than

the state changes as each statement is executed.

• The key question is: What function must be

applied to our initial machine and our data to

produce the final result?

• Statements take the form:
functionn(function1, function2, … (data)) …)

• ML, Scheme and LISP are examples of functional

languages.

Example GCD in Scheme

;; A Scheme version of Greatest

;; Common divisor

(define (gcd u v)

(if (= v 0) u

(gcd v (modulo u v))))

A Function GCD in C++

//gcd() - A version of greatest common

// divisor written in C++ in

// function style

int gcd(int u, int v)

{

if (v == 0)

return(u);

else

return(v, u % v);

}

Rule-Based Languages

• Rule-based or declarative languages execute
checking to see if a particular condition is true and
if so, perform the appropriate actions.

• The enabling conditions are usually written in
terms of predicate calculus and take the form:
condition1 → action1

condition2 → action2

… … …

• Prolog is the best know example of a declarative
language.

GCD in Prolog

gcd(U, V, U) :- V = 0.

gcd(U, V, X) :- not (V = 0),

Y is U mod V.

gcd(V, Y, X).

clauses in Prolog

means “if”

Object-Oriented Languages

• In object-oriented languages, data structures and
algorithms support the abstraction of data and endeavor to
allow the programmer to use data in a fashion that closely
represents its real world use.

• Data abstraction is implemented by use of

– Encapsulation – data and procedures belonging to a
class can only be accessed by that classes (with
noteworthy exceptions).

– Polymorphism – the same functions and operators can
mean different things depending on the parameters or
operands,

– Inheritance – New classes may be defined in terms of
other, simpler classes.

GCD in Java

public class IntWithGcd

{ public IntWithGcd(int val){ value = val; }

public int intValue() { return value; }

public int gcd(int val);

{ int z= value;

int y = v;

while (y != 0)

{

int t = y;

y = z % y;

z = t;

}

return z;

}

private int value;

}

Language Design Trade-offs

• Frequently, design criteria will be

contrdictory:

– Reliability and cost of execution

– In APL, expressivity and writability conflict

with readability

– Flexbilty and safety (e.g., variant records as a

safety loophole in Pascal).

Implementation Methods

• Compilation

• Pure Interpretation

• Hybrid Implementation Systems

The Compiling Process
Source

Code

Assembler version

Object

Module

Compiler Linker
Executable

version

The Pure Interpretation Process

Source

Code
Interpreter Output

Input

The Hybrid Interpretation

Process

Source

Code
Intermediate

Version

Interpreter Interpreter Output

Inpu

t

