What is Recursion?

- Recursion involves defining a solution to a problem in terms of another case of the problem except for one simple (or more) simpler cases in which the solution is defined explicitly.
- Example - Factorial

 \[n! = n \cdot (n-1)! \quad \text{for } n > 0 \]

 \[= 1 \quad \text{for } n = 0 \]

- We can write functions that call themselves recursively as long as they lead to a simple case that we can use as the basis for a solution.
The Original **factorial** Program

```java
public class TestFactorial {
    // main() - A Driver for our factorial function
    public static void main(String[] args) {
        Factorial f = new Factorial();
        System.out.println(f.factorial(5));
    }
}
```

```java
public class Factorial {
    // factorial() - A Recursive solution for n!
    public double factorial(int n) {
        int nless1;
        double f;
        if (n == 0) {
            // The simple case
            return(1.0);
        } else {
            // The recursive solution
            nless1 = n - 1;
            f = factorial(n-1);
            return(n*f);
        }
    }
}
```
Tracing **factorial**

<table>
<thead>
<tr>
<th>n</th>
<th>nless1</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Tracing **factorial** (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>nless1</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Tracing `factorial` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>nless1</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tracing `factorial` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>nless1</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tracing `factorial` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>nless1</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>
The Traceable Factorial Program

// factorial() - A Recursive solution for n!
double factorial(int n) {
 int nless1;
 double f;
 if (n == 0)
 // The simple case
 return(1.0);
 else {
 // The recursive case
 nless1 = n - 1;
 f = factorial(n-1);
 System.out.println(nless1 + "! = " + f);
 return(n*f);
 }
}

Tracing fact2

Output
0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
120
A simpler **factorial**

// factorial() – A Recursive solution for n!

double factorial(int n) {
 if (n == 0) // The simple case
 return(1.0);
 else // The recursive case
 return(n*factorial(n-1));
}

Example - Greatest Common Divisor

- The solution is defined as:
 \[\text{gcd}(x, y) = \text{gcd}(y, x) \] if \(x < y \)
 \[y \] if \(x \mod y = 0 \)
 \[\text{gcd}(y, x \mod y) \] if \(x \geq y \)

 \& x \mod y \neq 0
The GCD main program

import java.util.Scanner;

public class Gcd {
 public static void main(String[] args) {
 Gcd g = new Gcd();
 final int x = 81, y = 180;

 System.out.println("The greatest common");
 System.out.println("divisor of ");
 System.out.println(+ x + " and " + y + " is "+ g.gcd(x, y));
 }
}

public class Gcd {
 public int gcd(int x, int y) {
 if (x < y) {
 // Reverse the parameter
 return(gcd(y, x));
 } else if (x % y == 0) {
 // The simple case
 return(y);
 } else {
 // The Recursive case
 return(gcd(y, x % y));
 }
 }
}
Tracing \texttt{gcd}

\begin{tabular}{|c|c|}
\hline
81 & 180 \\
\hline
180 & 81 \\
\hline
81 & 18 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
81 & 180 \\
\hline
180 & 81 \\
\hline
81 & 18 \\
\hline
18 & 9 \\
\hline
\end{tabular}

Tracing \texttt{gcd} (continued)

\begin{tabular}{|c|c|}
\hline
81 & 180 \\
\hline
180 & 81 \\
\hline
81 & 18 \\
\hline
18 & 9 \\
\hline
9 & 0 \\
\hline
\end{tabular}
A Traceable Form of \texttt{gcd}

```java
public class Gcd {
    // \texttt{gcd()} - Finds the Greatest Common Divisor
    public int gcd(int x, int y) {
        if (x < y) {
            // Reverse the parameter
            // y cannot be larger
            System.out.println("x = "+x+"\ty = " + y);
            return(gcd(y, x));
        }
        else if (x % y == 0) {
            // The simple case
            System.out.println("x = "+x+"\ty = " + y);
            return(y);
        }
        else {
            // The Recursive case
            System.out.println("x = "+x+"\ty = " + y);
            return(gcd(y, x % y));
        }
    }
}
```
Tracing gcd

Output

\begin{align*}
 x &= 81 \quad y = 180 \\
 x &= 180 \quad y = 81 \\
 x &= 81 \quad y = 18 \\
 x &= 18 \quad y = 9 \\
\end{align*}

The greatest common divisor of 81 and 180 is 9

Example - Fibonacci Numbers

- Fibonacci numbers start with 0 and 1 and in each subsequent case are the sum of the two previous numbers.
- Fibonacci numbers are defined by the relationship:
 \[
 \text{Fib}_n = \text{Fib}_{n-1} + \text{Fib}_{n-2} \quad \text{for } n > 1 \\
 = n \quad \text{for } n \leq 1
 \]
- Fibonacci numbers is different from our previous example because it is doubly-recursive, i.e., requires two recursive calls
public class TestFib{
 // main() - Drives the Fibonacci function
 public static void main(String[] args)
 throws IOException {
 InputStreamReader
 isr = new InputStreamReader(System.in);
 BufferedReader
 keyb = new BufferedReader(isr);
 Fib f = new Fib();
 String inputLine;
 int n;

 // Input n
 System.out.println("Which Fibonacci number do" + "you want\t?");
 inputLine = keyb.readLine();
 n = Integer.parseInt(inputLine);
 System.out.println("The number is "+ f.fib(n));
 }
}
public class Fib {
 // fib() - A Recursive Fibonacci function
 public int fib(int n) {
 if (n <= 1)
 // The simple case
 return (n);
 else
 // The Recursive case
 return (fib(n-1) + fib(n-2));
 }
}

// fib() - A Recursive Fibonacci function
public int fib(int n) {
 if (n <= 1)
 // The simple case
 return (n);
 else
 // The Recursive case
 return (fib(n-1) + fib(n-2));
}

Program Run
Which Fibonacci number do you want? 6
The 6th Fibonacci number is 8
The Traceable Fib - fib.java

```java
public class Fib {
    // fib() - A Recursive Fibonacci function
    public int fib(int n) {
        int fibnless1, fibnless2, fibn;
        if (n <= 1)
            return(n);
        else {
            fibnless1 = fib(n-1);
            fibnless2 = fib(n-2);
            fibn = fibnless1 + fibnless2;
            System.out.println("The "+n
            + "th Fibonacci number is "+fibn);
            return(fibn);
        }
    }
}
```

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Tracing fib

```
<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Tracing `fib` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Tracing `fib` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Tracing `fib` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Tracing `fib` (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tracing fib (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Tracing fib (continued)

<table>
<thead>
<tr>
<th>n</th>
<th>fibnless1</th>
<th>fibnless2</th>
<th>fibn</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Binary Search

- A binary search is a reasonably fast way to search an array of data items or structures to find one with a particular value or a particular value in one field (known as the \textit{key}).
- Although it can be written without recursion, the recursive version is easier to follow.

\texttt{BinarySearch.java}

```java
public class BinarySearch {

    // The main binarySearch function and the recursive function that it calls, named binSearch

    // binarySearch() - A Binary Search function that calls the recursive function binsearch
    public int binarySearch(int key, int[] x, int n) {
        int index;
        index = binSearch(key, x, 0, n-1);  
        return(index);
    }
}
```
// binsearch() - The recursive binary search
// function
private int binSearch(int key, int[] x,
 int low, int high) {
 int mid;

 // Find the mid point
 mid = (low + high) / 2;
 if (low > high)
 // We've searched the whole array
 // - it isn't in it
 return(-1);
 else if (x[mid] == key)
 // We found it
 return(mid);
 else if (x[mid] < key)
 // Search the upper half of this section
 return(binSearch(key, x, mid+1, high));
 else
 // Search the lower half of this section
 return(binSearch(key, x, low, mid - 1));
}

A Driver for `BinarySearch`

```java
class RunBinarySearch {
    public static void main(String[] args) {
        TestBinarySearch tbs = new TestBinarySearch();
        tbs.run(13);
    }
}

import java.io.*;
// TestBinarySearch - A Driver for the binary search function
public class TestBinarySearch {
    public static void run(int key) {
        int i = 0;
        int[] x = new int[10];
        BinarySearch bs = new BinarySearch();

        for (i = 0; i < 10; i++) {
            x[i] = 2*i + 5;
            System.out.println("x[" + i + "] = 
                              + x[i]);
        }
        System.out.println("\n\n\n");
        i = bs.binarySearch(key, x, 10);
        System.out.println("x[" + i + "] = 13");
    }
}
```
Tracing `binSearch`

<table>
<thead>
<tr>
<th>low</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>mid</td>
<td></td>
</tr>
<tr>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>

Returns 4

RunBinarySearch with 19

```java
public class RunBinarySearch {
    public static void main(String[] args) {
        TestBinarySearch tbs = new TestBinarySearch();
        tbs.run(19);
    }
}
```
Tracing `RunBinarySearch` with 19

```
<table>
<thead>
<tr>
<th>low</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>
```

Returns 7

```
<table>
<thead>
<tr>
<th>low</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>13</th>
<th>15</th>
<th>17</th>
<th>19</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td></td>
</tr>
</tbody>
</table>
```

RunBinarySearch with 22

```
public class RunBinarySearch {
    public static void main(String[] args) {
        TestBinarySearch tbs = new TestBinarySearch();
        tbs.run(22);
    }
}
```
Tracing RunBinarySearch with 22

Tracing RunBinarySearch with 22 (continued)

Returns -1
Towers of Hanoi

• The Towers of Hanoi is a classical example of a problem that is difficult to solve without recursion.
• The Towers consists of three pegs, one of which has a series of disks placed on it, with the disks stacked with smaller disks on top of larger disks.
• The challenge is to move them from one peg to another using an extra peg:
 – moving them one at a time
 – no disk can be placed on top of a smaller disk.

Solving the Towers of Hanoi

• Our solution involves three steps:
 1. Move all but the bottom disk to the extra peg
 2. Move the bottom disk to its final location.
 3. Move the other disks on top of the bottom disk.
• This is the basis of our recursive solution.
Our Recursive Solution - Initially

Our Recursive Solution - After Step 1
Our Recursive Solution - After Step 2

Our Recursive Solution - After Step 3
import java.io.*;

public class TestTowers {
 // main() - Runs the recursive solution to
 // the famous Towers of Hanoi
 // problem

 public static void main(String[] args)
 throws IOException{
 int numDisks;
 String inputLine;
 BufferedReader keyboard
 = new BufferedReader(
 new InputStreamReader(
 System.in));
 Towers tower = new Towers();

 // Get the number of disks to be used
 System.out.println("How many disks\t(1-9)?");
 inputLine = keyboard.readLine();
 numDisks = Integer.parseInt(inputLine);

 // Solve the problem
 tower.towersOfHanoi('A', 'B', 'C', numDisks);
 }
}
public class Towers {

 // TowersOfHanoi() - The recursive solution to
 // the famous Towers of
 // Hanoi problem
 public void towersOfHanoi(char origin,
 char destination, char via, int disks) {
 // Use the recursive solution for more than
 // one disk
 if (disks > 1) {
 // Move all but the bottom to the auxiliary
 // peg "via"
 // Move the bottom disk to the
 // destination peg
 // Move the rest on top of the bottom peg
 towersOfHanoi(origin, via, destination,
 disks - 1);
 System.out.println("Move disk "+ disks
 + " from " + origin + " to "
 + destination);
 towersOfHanoi(via, destination, origin,
 disks - 1);
 }
 else
 // Move the only disk into position
 System.out.println("Move disk #1 from "
 + origin + " to "
 + destination);
 }
}
Output from *towers*

How many disks? 3
Move disk #1 from A to B
Move disk #2 from A to C
Move disk #1 from B to C
Move disk #3 from A to B
Move disk #1 from C to A
Move disk #2 from C to B
Move disk #1 from A to C