
Computer Organization and
Assembly Language

Lecture 7 - Integer Arithmetic

Shift and Rotate Instructions

• Shifting means to move bits right and left inside an
operand.

• All of the Shift and Rotate instructions affect
Overflow and Carry Flags.

• The Shift and Rotate instructions include:
SHL - Shift Left ROL – Rotate Left
SHR - Shift R ight ROR – Rotate R ight
SAL – Shift Arithmetic Left RCL - Rotate Carry Left
SAR – Shift Arithmetic R ight RCR - Rotate Carry R ight
SHLD - Shift Left Double SHRD - Shift R ight Double

Logical Shifts Vs. Arithmetic Shifts

• A logical shift fills the newly created bit position with
zero.If we do a single logical right shift on 11001111, it
becomes 011001111.

• An arithmetic shift is filled with a copy of the original
number’s sign bit.If we do a single arithmetic right shift on
11001111, it becomes 11100111.

0

CF

SHL Instruction
• The Shift Left instruction performs a left shift on the

destinations operand, filling the lowest bit with 0. The
highest bit is moved into the Carry Flag.

• The instruction format is:
SHL destination, bits_shifted

• Instruction formats include:
SHL reg, imm8
SHL mem, imm8
SHL reg, CL
SHL mem, CL

SHL Instruction - Examples

• The following instruction sequence shifts the BL once to
the left, with the highest bit copied into the Carry flag and
the lowest bit cleared:

• movbl, 8Fh ; BL = 1000111b
shl bl, 1 ; BL = 00011110b, CF = 1

• SHL can be used to perform a high-speed multiplication by
powers of 2:
mov dl, 5 ; DL = 00000101b
shl dl, 1 ; DL = 00001010b
mov dl, 2 ; DL = 00101000b, = 40

SHR Instruction
• The Shift Right instruction performs a right shift on the

destinations operand, filling the lowest bit with 0. The
lowest bit is moved into the Carry Flag.

• The instruction format is:
SHR destination, bits_shifted

• Instruction formats include:
SHR reg, imm8
SHR mem, imm8
SHR reg, CL
SHR mem, CL

SHR Instruction - Examples

• The following instruction sequence shifts the AL once to
the right, with the lowest bit copied into the Carry flag and
the highest bit cleared:

• moval, D0h ; AL = 11010000b
shr al, 1 ; AL = 01101000b, CF = 0

• SHR can be used to perform a high-speed division by 2n :
mov dl, 32 ; DL = 00100000b = 32
shr dl, 1 ; DL = 00010000b = 16
mov al, 040h ; AL = 01000000b = 64
shr al, 3 ; AL = 00001000b = 8

SAL and SAR Instructions

• SAL (Shift Arithmetic Left) is identical to the SHL
instruction.

• SAR (Shift Arithmetic Right) performs a right arithmetic
shift on its operand.

• The instruction format is:
SAR destination, bits_shifted

• Instruction formats include:
SAR reg, imm8
SAR mem, imm8
SAR reg, CL
SAR mem, CL

CF

S

SAR Instruction - Examples

• The following instruction sequence shifts the AL once to
the right, with the lowest bit copied into the Carry flag and
the sign bit copied to the right:

• moval, F0h ; AL = 11110000b = -16
shr al, 1 ; AL = 11111000b = -8

; CF = 0

• SAR can be used to perform a high-speed signed division
by 2n :
mov dl, -128 ; DL = 10000000b = -128
shr dl, 3 ; DL = 11110000b = -16

ROL Instruction

• The ROL instruction shifts each bit to the left, with the
highest bit copied in the Carry flag and into the lowest bit.

• The instruction format is:
ROL destination, bits_shifted

• Instruction formats
include:
ROL reg, imm8
ROL mem, imm8
ROL reg, CL
ROL mem, CL

CF

S

ROL Instruction - Examples

• The following instruction sequence shifts the AL three
times (once each) to the left, with the highest bit copied
into the Carry flag and into the lowest bit:
mov al, 40h ; AL = 01000000b
rol al, 1 ; AL = 10000000b, CF = 0
rol al, 1 ; AL = 00000001b, CF = 1
rol al, 1 ; AL = 00000010b, CF = 0

• You can use ROL to exchange the upper and lower halves
of a byte:
mov al, 26h
rol al, r ; AL = 01100010b = 62h

ROR Instruction

• The ROR instruction shifts each bit to the right, with the
lowest bit copied in the Carry flag and into the highest bit.

• The instruction format is:
ROR destination, bits_shifted

• Instruction formats
include:
ROR reg, imm8
ROR mem, imm8
ROR reg, CL
ROR mem, CL

CF

S

ROR Instruction - Examples

• The following instruction sequence shifts the AL three
times (once each) to the right, with the lowest bit copied
into the Carry flag and into the highest bit:
mov al, 01h ; AL = 00000001b
ror al, 1 ; AL = 10000000b, CF = 1
ror al, 1 ; AL = 01000000b, CF = 0
ror al, 1 ; AL = 00100000b, CF = 0

• You can use ROL to exchange the upper and lower halves
of a byte:
mov al, 26h
ror al, r ; AL = 01100010b = 62h

RCL Instruction
• The RCL (Rotate and Carry Left) instruction shifts each bit

to the left, copies the Carry flag to the least significant bit
and copies the most significant bit into the Carry flag.

• In this examples, the lowest bit is copied into the Carry
flag and into the highest bit of the result:
clc ; CF = 0
mov bl, 88h ; CF = 0 BL = 10001000b
rcl bl, 1 ; CF = 1 AL = 00010000b
rcl bl, 1 ; CF = 0 AL = 00100001b

CF S

Example – Recovery a Carry Flag Bit

• RCL can recover a bit that has previously
been shifted into the Carry flag:
.data

testval BYTE 01101010b
.code

shr testval, 1 ; shift LSB into CF
jc quit ; exit if Carry

; Flag set
rcl testval, 1 ; else restore the

; number

RCR Instruction
• The RCR (Rotate and Carry R ight) instruction shifts each

bit to the right, copies the Carry flag to the most significant
bit and copies the least significant bit into the Carry flag.

• In this examples, the lowest bit is copied into the Carry
flag and into the highest bit of the result:
stc ; CF = 1
mov ah, 10h ; CF = 1 AH = 00010000b
rcr ah, 1 ; CF = 0 AL = 00001000b
rcr ah, 1 ; CF = 0 AL = 00000100b

CF S

SHLD/SHRD Instructions

• The SHLD and SHLR instructions (Shift
Left/Right Doubleword) require at least a 386
processor.

• When the SHLD (SHRD) is called, the bit
positions opened by the shift in the first operand
are filled by the the most (least) significant bits of
the second operand.

• The second operand is unaffected but the Sign,
Zero, Auxiliary Parity and Carry Flags are
affected.

SHLD/SHRD Instructions (continued)

• The syntax is:
SHLD destination, source, count
SHLR destination, source, count

• The instruction formats for both are:
SHLD reg16, reg16, CL/imm8
SHLD mem16, reg16, CL/imm8
SHLD reg32, reg32, CL/imm8
SHLD mem32, reg32, CL/imm8

SHLD – An Example

.data
wval WORD 9BA6H
.code

mov ax, AC36H
shld wval, ax, 4 ; wval = BA6Ah

9BA6

wval

BA6A

AC36

AX

AC36

SHRD – An Example

mov ax, 234Bh
mov dx, 7654h
shrd ax, dx, 4 ; wval = 4234h

7654

DX

7654

234B

AX

4234

Shift and Rotate Applications

• Shift and Rotate instructions are included because
they are helpful in certain applications.

• These applications includes:
– Shifting Multiple Doublewords (for bit-mapped

graphics images)
– Binary multiplication
– Display Binary Bits
– Isolating a Bit String

Shifting Multiple Doublewords
• Some programs need to manipulate all the bits within an

array, such as in a bit-mapped graphic image one location
location on a screen to another.

• .data
ArraySize = 3
array DWORD ArraySize DUP(99999999H);1001 etc.
.code

mov esi, 0
shr array[esi+8], 1 ; high dword
rcr array[esi+4], 1 ; middle dword & CF
rcr array[esi], 1 ; low dword & CF

Before 1001 1001 1001 1001 1001 1001 1001 1001 …
After 0100 1100 1100 1100 1100 1100 1100 1100 …

Binary Multiplication

• We can save time multiplying if we can use shifting to
replace multiplying by 2, even if we need to add
afterwards:
EAX * 36 = EAX * (32 + 4)

= EAX*32 + EAX * 4
.code

mov eax, 123
mov ebx, eax
shl eax, 5 ; multiply by 2^5
shl ebx, 2 ; mulitply by 2^2
add eax, ebx ; add the products

Displaying Binary Bits

TITLE Displaying Binary Bits
; Display a 32-bit integer in binary

INCLUDE Irvine32.inc

.data
binValue DWORD 1234ABCDh ; sample bin. value
buffer BYTE 32 dup(0), 0
.code
main PROC

mov eax, binValue ; number to display
mov ecx, 32 ; number of bits in EAX
mov esi, offset buffer

L1: shl eax, 1 ; shift high bit into CF
mov BYTE ptr [esi], '0‘

; choose 0 as default
; digit

jnc L2
mov BYTE ptr[esi], '1‘

; else move to buffer

L2: inc esi ; next buffer position
loop L1 ; shift a bit to left

mov edx, OFFSET buffer
call WriteString
call CrLf
exit

main ENDP
END main

Isolating A Bit String

• Often a byte or word contains more than one field,
making it necessary to extract short sequences of
bit called bit strings.

• MS-DOS function 57h returns a file date stamp.

0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 0

DH DL

Year Month Day
Bits 9-15 Bits 5-8 Bits 0-4

mov al, dl ; make copy of DL
and al, 00011111b ; clear bits 5-7
mov day, al ; save in day

mov ax, dx ; make a copy of DX
shr ax, 5 ; shift right 5 bits
and 00001111b ; clear bits 4-7
mov month, al ; save in month

mov al, dh ; make a copy of DH
shr al, 1 ; shift right one position
mov ah, 0 ; clear AH to zeros
add ax, 1980 ; year is relative to

1980
mov year, ax ; save in year

Multiplication And Division Instructions

• Unlike addition and subtraction, multiplication
and division operations are different for signed
and unsigned operands.

• The Intel architecture allows you multiply and
divide 8- 16- and 32-bit integers.

• The operators are:
– MUL and DIV for unsigned multiplication and

division.
– IMUL and IDIV for unsigned multiplication and

division.

MUL Instruction

• The MUL instruction multiplies an 8-, 16, or 32-bit
unsigned operand by either the AL, AX or EAX
register (depending on the operand’s size).

• The instruction formats
are:
MUL r/m8
MUL r/m16
MUL r/m32

EAX

r/m32x

EAXEDX

MUL Instruction (continued)

EDX:EAXr/m32EAX

DX:AXr/m16AX

AXr/m8AL

ProductMultiplierMultiplicand

• The MUL instruction sets the Carry and Overflow flags if
the upper half of the product is not equal to zero.
– E.g., if AX is multiplied by a 16-bit multiplier, the

product is stored in DX:AX. IF the DX is not zero, the
Carry and Overflow flags are set.

MUL Instruction - Examples

• 8-bit unsigned multiplication (5 * 10H)
mov al, 5h
mov bl, 10h
mul bl ; CF = 0

• 16-bit unsigned multiplication (0100h*2000h)
.data
val1 WORD 2000h
val2 WORD 0100h
.code

mov ax, val1
mul val2 ; CF = 1

• 32-bit unsigned multiplication (12345h*1000h)
mov eax, 12345h
mov ebx, 1000h
mul ebx ; CF = 1

IMUL Instruction

• The IMUL instruction multiplies an 8-, 16, or 32-bit
signed operand by either the AL, AX or EAX
register (depending on the operand’s size).

• The instruction formats
are:
IMUL r/m8
IMUL r/m16
IMUL r/m32

EAX

r/m32x

EAXEDX

IMUL Instruction (continued)

• The IMUL instruction sets the Carry and Overflow
flags if the upper half of the product is not a sign
extension of the low-order product.equal to zero.

• E.g., if AX is multiplied by a 16-bit multiplier, the
product is stored in DX:AX. IF the AX contains a
negative value and the DX is not all 1s, the Carry
and Overflow flags are set.

IMUL Instruction - Examples

• 8-bit signed multiplication (48 * 4)
mov al, 48
mov bl, 4
imul bl ; AX = 00C0h, OF = 1

• 16-bit signed multiplication (-4 * 4)
mov al, -4
mov bl, 4
imul bl ; AX = FFF0h, OF = 0

• 32-bit signed multiplication (12345h*1000h)
mov eax, +4823424
mov ebx, -423
imul ebx ; EDX:EAX =

; FFFFFFFF86636D80h, OF = 0

DIV Instruction

• The DIV instruction divides an 8-, 16, or 32-bit
unsigned divisor into either the AL, AX or EAX
register (depending on the operand’s size).

• The instruction formats
are:
DIV r/m8
DIV r/m16
DIV r/m32

EAX

r/m32

EAXEDX
=

EDX

quotient

remainder

DIV Instruction (continued)

EDXEAXr/m32EDX:EAX

DXAXr/m16DX:AX

AHALr/m8AX

RemainderQuotientDivisorDividend

DIV Instruction - Examples
• 8-bit unsigned division (83h/2)

mov ax, 0083h
mov bl, 2
div bl ; AL = 41h, AH = 01h

• 16-bit unsigned division (8003h/100h)
mov dx, 0
mov ax, 8003h
mov cx, 100h
div cx ; AX = 0080h, DX = 0003h

• 32-bit unsigned division (800300020h/100h
.data
dividend QWORD 0000000800300020h
divisor DWORD 00000100h
.code

mov edx, DWORD ptr dividend+4
mov eax, DWORD ptr dividend
div divisor

CBW, CWD and CDQ Instructions

• CBW intends the sign bit of AL into the AH register.
• CWD intends the sign bit of AX into the DX register.
• CDQ intends the sign bit of EAX into the EDX register.
.data
byteVal SBYTE -65 ; 9Bh
wordVal SWORD -65 ; FF9Bh
dwordVal SDWORD -65 ;FFFFFF9Bh
.code

mov al, byteVal ; AL = 9Bh
cbw ; AX = FF9Bh
mov ax, wordVal ; AX = FF9Bh
cwd ; DX:AX = FFFFFF9Bh
mov eax, dwordVal; EAX = FFFFFF9Bh
cdq ; EDX:EAX = FFFFFFFFFFFFFF9Bh

IDIV Instruction

• The IDIV instruction divides an 8-, 16, or
32-bit signed divisor into either the AL, AX
or EAX register (depending on the
operand’s size).

• Signed division requires that the sign bit be
extend into the AH, DX or EDX (depending
on the operand’s size) using CBW, CWD or
CDQ.

IDIV Instruction – 8-bit Example

.data
byteVal SBYTE -48
.code

mov al, byteVal ; dividend
cbw ; extend Al into AH
mov bl, 5 ; divisor
idiv bl ; AL = -9, AH = -3

IDIV Instruction – 16-bit Example

.data
wordVal SWORD -5000
.code

mov ax, wordVal ; dividend, low
cwd ; extend AX into DX
mov bx, 256 ; divisor
idiv bx ; quotient AX = -19

; rem. DX = -136

IDIV Instruction – 32-bit Example

.data
wordVal SWORD -50000
.code

mov eax, dwordVal ; dividend, low
cdq ; extend EAX into EDX
mov ebx, 256 ; divisor
idiv bx ; quotient EAX = -195

; remainder EDX = -80

Divide Overflow

• Divide Overflow occurs when a quotient is too large to fit
into the destination operand.
mov ax, 1000h
mov bl, 10h
div bl ; AL can’t hold 100h

• We are not yet equipped to handle it; the safest thing is to
try avoiding it by using a 32-bit divisor.
mov eax, 1000h
mov ebx, 10h
div ebx ; EAX = 00000100h

Dividing By 0

• It is fairly easy to handle division by zero:
mov ax, dividend
mov bl, divisor
cmp bl, 0
je NoDivideZero
div bl
… …

NoDivideZero: … … ; Display error message

Implementing Arithmetic Expressions

• Implement var4 = (var1 + var2) * var3
mov eax, var1
add eax, var2
mul var3 ; EAX = EAX * var3
jc tooBig ; unsigned overflow?
mov var4, eax
jmp next

tooBig: ; display error message

Implementing Arithmetic Expressions

• Implement var4 = (var1 *5) / (var2 – 3)
mov eax, var1 ; left side
mov ebx, 5
mul ebx ; EDX:EAX = product
mov ebx, var2 ; right side
sub ebx, 3
div ebx ; final division
mov var4, eax

Extended Addition and
Subtraction Instructions

• Extended addition and subtraction involves
adding or subtracting number of almost
unlimited size.

• We use the ADC and SBB instruction to add
with carry or subtract with borrow,
extending the operation beyond a single
byte, word or doubleword.

ADC Instruction

• ADC (Add With Carry) adds the source operand
and the carry flag to the destination operand.

• Its formats are the same as the mov instruction:
ADC reg, reg
ADC mem, reg
ADC reg, mem
ADC mem, imm
ADC reg, imm

Extended Addition Example

Extended_Add PROC
; Calculates the sum of two extended integers
; that are stored as an array of doublewords.
; Receives ESI and EDI point to the two integers.
; EBX points to the a variable that will hold the
; sum.
; ECX indicates the number of doublewords to be
; added.

pushad
clc ; Clear the carry flag

L1: mov eax, [esi] ; get the first integer
adc eax, [edi] ; add the second integer
pushfd ; save the carry flag
mov [ebx], eax ; store partial sum
add esi, 4 ; advance all 3 pointers
add edi, 4
add ebx, 4
popfd
loop L1

adc word ptr [ebx], 0
popad
ret

Extended_Add ENDP

SBB Instruction

• SBB (Subtract With Borrow) subtracts the source
operand and the carry flag from the destination
operand.

• Its formats are the same as the mov instruction:
SBB reg, reg
SBB mem, reg
SBB reg, mem
SBB mem, imm
SBB reg, imm

SBB Instruction - Example

• Subtracting two 32-bit integers (100000000h - 1)
mov edx, 1 ; upper half
mov eax, 0 ; lower half
sub eax, 1 ; subtract 1
sbb edx, 0 ; subtract upper half

