Computer Organization and
Assembly Language

Lecture 7 - Integer Arithmetic

Shift and Rotate Instructions

 Shifting means to move bits right and left inside an
operand.
 All of the Shift and Rotate instructions affect
Overflow and Carry Flags.
» The Shift and Rotate instructions include:
SHL - Shift Left ROL — Rotate L eft
SHR - Shift Right ROR — Rotate Right
SAL — Shift Arithmetic Left RCL - Rotate Carry Left
SAR — Shift Arithmetic Right RCR - Rotate Carry Right
SHLD - Shift Left Double SHRD - Shift Right Double

Logical Shifts Vs. Arithmetic Shifts

* A logica shift fills the newly created bit position with
zero.If we do asinglelogical right shift on 11001111, it
becomes 011001111.

A ddaaaaaand

CF

» An arithmetic shift is filled with a copy of the original
number’ s sign bit.If we do a single arithmetic right shift on
11001111, it becomes 11100111.

EH’HH’H—D

SHL Instruction

* The Shift Left instruction performs a left shift on the
destinations operand, filling the lowest bit with 0. The
highest bit is moved into the Carry Flag.

. The instruction formet is:

SHL destination, bits_shifted
e Instruction formats include:

SHL reg, imms

SHL mem, imm3

SHL reg, CL

SHL mem CL

SHL Instruction - Examples

» The following instruction sequence shifts the BL once to
the left, with the highest bit copied into the Carry flag and
the lowest bit cleared:

e novbl, 8Fh ; BL = 1000111b

shl bl, 1 ; BL = 00011110b, CF =1

» SHL can be used to perform a high-speed multiplication by

powers of 2:

nov dl, 5 ; DL = 00000101b
shl dl, 1 ; DL = 00001010b
nov dl, 2 ; DL = 00101000b, = 40

SHR I nstruction

* The Shift Right instruction performs aright shift on the
destinations operand, filling the lowest bit with 0. The
lowest bit is moved into the Carry Flag.

. The instruction formet is:

SHR destination, bits_shifted
e Instruction formats include:

SHR reg, imms

SHR mem, imm3

SHR reg, CL

SHR mem CL

SHR Instruction - Examples

» The following instruction sequence shifts the AL once to
the right, with the lowest bit copied into the Carry flag and

the highest bit cleared:
 moval , DOh ; AL = 11010000b
shr al, 1 ; AL = 01101000b, CF =0
* SHR can be used to perform a high-speed division by 2":
nov d, 32 ; DL = 00100000b = 32
shr d, 1 ; DL = 00010000b = 16
nov al, 040h ; AL = 01000000b = 64
shr al, 3 ; AL = 00001000b = 8

SAL and SAR Instructions

o SAL (Shift Arithmetic Left) isidentica to the SHL
instruction.

* SAR (Shift Arithmetic Right) performs aright arithmetic
shift on its operand.

S

e Theinstruction format is:
SAR destination, bits shifted 4l dddd

 Instruction formats include:
SAR reg, imms
SAR mem, imm3 —
SAR reg, CL CF
SAR mem CL

SAR Instruction - Examples

» The following instruction sequence shifts the AL once to

the right, with the lowest bit copied into the Carry flag and
the sign bit copied to the right:

noval , FOh ; AL = 11110000b = -16
shr al, 1 ; AL = 11111000b = -8
; CF=0

SAR can be usad to perform a high-speed signed division
by 2":

nov d, -128
shr dl, 3

10000000b
11110000b

-128

: DL
;. DL -16

ROL Instruction

The RoL instruction shifts each bit to the left, with the
highest bit copied in the Carry flag and into the lowest bit.

The instruction format is:

ROL destination, bits shifted S

Instruction formats dd el el el |l <
include:

ROL reg, imms

ROL mem, imm3

ROL reg, CL CF

ROL mem, CL

ROL Instruction - Examples

» The following instruction sequence shifts the AL three

times (once each) to the left, with the highest bit copied
into the Carry flag and into the lowest bit:

nov al, 40h ; AL = 01000000b

rol al, 1 ; AL = 10000000b, CF = 0
rol al, 1 ; AL = 00000001b, CF =1
rol al, 1 ; AL = 00000010b, CF =0
Y ou can use ROL to exchange the upper and lower halves
of abyte:

nmov al, 26h

rol al, r ; AL = 01100010b = 62h

ROR Instruction

The ROR ingtruction shifts each bit to the right, with the
lowest bit copied in the Carry flag and into the highest bit.

The instruction format is:
ROR destination, bits shifted S
Instruction formats

include:]
ROR reg, imms i,

ROR mem,_ imm8
RCOR reg, CL
ROR mem, CL

v
\.
A
\.
A
\.
A

ROR Instruction - Examples

» The following instruction sequence shifts the AL three
times (once each) to the right, with the lowest bit copied
into the Carry flag and into the highest bit:

nov al, 01lh ; AL = 00000001b

ror al, 1 ; AL = 10000000b, CF = 1

ror al, 1 ; AL = 01000000b, CF = 0

ror al, 1 ; AL = 00100000b, CF =0
* You can use ROL to exchange the upper and lower halves

of abyte:

nmov al, 26h

ror al, r ; AL = 01100010b = 62h

RCL Instruction

» TheRcL (Rotate and Carry Left) instruction shifts each bit
to the left, copies the Carry flag to the least significant bit
and copies the most significant bit into the Carry flag

* Inthis examples, the lowest hit is copied into the Carry
flag and into the highest bit of the result:

clc i CF =0

nov bl, 88h CF = 0 BL = 10001000b

rcl bl, 1 ; CF =1 AL = 00010000b

rcl bl, 1 : CF = 0 AL = 00100001b
CF S

i‘ <4< <€ <€ <€ <€ <€

Example — Recovery a Carry Flag Bit

* RCL can recover abit that has previously
been shifted into the Carry flag:

.data
t estval BYTE 01101010b
. code
shr testval, 1 ; shift LSBinto CF
jc qui t ;oexit if Carry
; Flag set
rcl testval, 1 ; else restore the
; nunber
RCR Instruction

» TheRcR (Rotate and Carry Right) instruction shifts each
bit to the right, copies the Carry flag to the most significant
bit and copies the least significant bit into the Carry flag

* Inthis examples, the lowest hit is copied into the Carry
flag and into the highest bit of the result:

stc ; CF =1

nov ah, 10h CF =1 AH = 00010000b
rcr ah, 1 ; CF = 0 AL = 00001000b
rcr ah, 1 CF = 0 AL = 00000100b

CF S

i‘ <4< <€ <€ <€ <€ <€

SHLD/SHRD Instructions

e The SHLD and SHLR instructions (Shift
L eft/Right Doubleword) require at |east a 386
processor.

* When the SHLD (SHRD) is cdled, the bit
positions opened by the shift in the first operand
arefilled by the the most (least) significant bits of
the second operand.

» The second operand is unaffected but the Sign,
Zero, Auxiliary Parity and Carry Flags are
affected.

SHLD/SHRD Instructions (continued)

 Thesyntax is:
SHLD desti nati on, source, count
SHLR desti nati on, source, count

» Theinstruction formats for both are:
SHLD regl6, regl6, CL/im8
SHLD nmenml6, regl6, CL/im8
SHLD reg32, reg32, CL/imm8
SHLD nen82, reg32, CL/im8

SHLD— An Example

. dat a
wal WORD 9BA6H
. code
nmov ax, AC36H
shld wal, ax, 4 ; wal = BAG6Ah

wval AX

«<—9BA6 | | AC36

e

BAGA"| | AC36

SHRD — An Example

mov ax, 234Bh
nmov dx, 7654h
shrd ax, dx, 4 ; wal = 4234h

DX AX

7654 | 234B+—

AN

7654 | |M4234

Shift and Rotate Applications

» Shift and Rotate instructions are included because
they are helpful in certain applications.

» These applications includes:
— Shifting Multiple Doublewords (for bit-mapped
graphics images)
— Binary multiplication
— Digplay Binary Bits
— Isolating a Bit String

Shifting Multiple Doublewords

» Some programs need to manipulate all the bits within an
array, such asin a bit- mapped graphic image one location
location on a screen to another.

e .data

ArraySi ze = 3

array DWORD ArraySi ze DUP(99999999H); 1001 etc.

. code

nov esi, O

shr array[esi +8], 1 ; high dword
rcr array[esi+4], 1 ; mddle dword & CF
rcr array[esi], 1 ; low dword & CF

Before 1001 1001 1001 1001 1001 1001 1001 1001 ...
After 0100 1100 1100 1100 1100 1100 1100 1100 ...

Binary Multiplication

* We can save time multiplying if we can use shifting to

replace multiplying by 2, even if we need to add
afterwards:

EAX * 36 =EAX * (32 +4)
= EAX*32 + EAX * 4

. code
nmov eax, 123
nov ebx, eax
shl eax, b5 ; multiply by 275
shl ebx, 2 ; mulitply by 272
add eax, ebx ; add the products

Displaying Binary Bits

TITLE Di splaying Binary Bits
; Display a 32-bit integer in binary

| NCLUDE I rvine32.inc

.data
bi nval ue DWORD 1234ABCDh ; sanple bin. value
buffer BYTE 32 dup(0), O
. code
mai n PROC
nov eax, binValue ; nunber to display
nov ecx, 32 ; nunber of bits in EAX

nmov esi, offset buffer

L1: shl eax, 1 ; shift high bit into CF
nov BYTE ptr [esi], 'O
choose 0 as default
digit
j nc L2
nov BYTE ptrfesi], '1'
; else move to buffer

L2: i nc esi ; next buffer position
loop L1 ; shift a bit to left

nmov edx, OFFSET buffer
call WiteString

call Cr Lf
exit

mai n ENDP
END mai n

|solating A Bit String

» Often a byte or word contains more than one field,
making it necessary to extract short sequences of
bit called bit strings

* MS-DOS function 57h returns afile date stamp.

DH DL

Year Month Day

nov al, d
and al, 00011111b
nov day, a

nov ax, dx
shr ax, 5
and 00001111b
nov mont h, a

nmov al, dh ;
shr al, 1 ; shift
nov ah, 0 ;
add ax, 1980

nov year, ax

make copy of DL
clear bits 5-7
save i n day

make a copy of DX
shift right 5 bits
clear bits 4-7
save in nmonth

make a copy of DH
ri ght one position
clear AH to zeros
year is relative to

save in year

Multiplication And Division Instructions

» Unlike addition and subtraction, multiplication
and division operations are different for signed

and unsigned operands.

* The Intel architecture allows you multiply and
divide 8 16- and 32-bit integers.

* The operators are:

— MUL and DI Vv for unsigned multiplication and

divison.

— 1ML and 1 DI v for unsigned multiplication and

divison.

* The MUL instruction multiplies an 8-, 16, or 32-bit

MJUL Instruction

unsigned operand by either the AL, AX or EAX
register (depending on the operand’ ssize).

e Theinstruction formats EAX
are:
ML r/n8 x| a2
MUL r/ mo EDX | EAX
MUL r/ nB2
MUL Instruction (continued)
Multiplicand | Multiplier Product
AL r/m8 AX
AX r/m16 DX:AX
EAX r/m32 EDX:EAX

* TheMuL instruction sets the Carry and Overflow flags if
the upper half of the product is not equal to zero.

— E.g., if AX ismultiplied by a 16-bit multiplier, the

product is stored in DX:AX. IF the DX is not zero, the
Carry and Overflow flags are set.

MUL Instruction - Examples

» 8-bit unsigned multiplication (5 * 10H)

nmov al, 5h
nov bl , 10h
mul bl ;. CF=0

» 16-bit unsigned multiplication (0100h* 2000h)
.data
vall WORD 2000h
val 2 WORD 0100h
. code
nmov ax, vall
mul val2 ; CF =1
» 32-hit unsigned multiplication (12345h* 1000h)
nmov eax, 12345h
nov ebx, 1000h
nul ebx ; CF

1
-

| MUL Instruction

e Thel MUL instruction multiplies an 8-, 16, or 32-hit

signed operand by either the AL, AX or EAX
register (depending on the operand’ ssize).

¢ Theinstruction formats EAX
are:
IMUL r/n8 X r/m32
| MUL r/ m6 EDX | EAx
| MUL r/ n82

| MUL Instruction (continued)

* Thel MUL instruction sets the Carry and Overflow
flagsif the upper half of the product is not asign
extension of the low-order product.equal to zero.

* E.g.,if AX ismultiplied by a 16-bit multiplier, the
product is stored in DX:AX. |IFthe AX contains a
negative value and the DX isnot dl 1s, the Carry

and Overflow flags are set.

| MUL Instruction - Examples

« 8-bit signed multiplication (48 * 4)

nov al, 48
nmov bl, 4
i mul bl ; AX = 00COh, OF =1
» 16-bit signed multiplication (-4 * 4)
nov al, -4
nmov bl, 4
i mul bl ; AX = FFFOh, OF = 0

» 32-bit signed multiplication (12345h* 1000h)
nmov eax, +4823424
nov ebx, -423
i mul ebx ; EDX: EAX =
. FFFFFFFF86636D80h, OF

=0

DI V Instruction

e The D V ingtruction divides an 8-, 16, or 32-hit
unsigned divisor into either the AL, AX or EAX
register (depending on the operand’ ssize).

quotient

* Theinstruction formats '
are: EDX | EAX EAX
DV r/ n8 =
DV r/ m6 I EDX
DV r/ nB82 f

remainder

DI V Instruction (continued)

Dividend | Divisor | Quoatient | Remainder

AX r/m8 AL AH

DX:AX r/ml16 AX DX

EDX:EAX | r/m32 EAX EDX

Dl V Instruction - Examples

» 8-bit unsigned division (83h/2)

nov ax, 0083h
nov bl, 2
div bl ; AL = 41h, AH = 01h
» 16-bit unsigned division (8003h/100h)
nmov dx, O
nmov ax, 8003h
nmov cx, 100h
div cX ; AX = 0080h, DX = 0003h
» 32-hit unsigned division (800300020h/100h
.data
di vi dend QW\CRD 0000000800300020h
di vi sor DWORD 00000100h
. code
nmov edx, DWORD ptr dividend+4
nmov eax, DWORD ptr dividend
div di vi sor

CBW, CWD and CDQ Instructions

« CBWwintends the sign bit of AL into the AH register.
« CWDintends the sign bit of AX into the DX register.
+ cDQintends the sign bit of EAX into the EDX register.

.data
byt eVal
wor dVal
dwor dVal
. code
nov
cbw
nov
cwd
nov
cdqg

SBYTE - 65 ; 9Bh
SWORD - 65 ; FF9Bh
SDWORD - 65 ; FFFFFF9Bh
al, byteval ; AL = 9Bh

; AX = FF9Bh

ax, wordval ; AX = FF9Bh
; DX: AX = FFFFFF9Bh
eax, dwordval; EAX = FFFFFF9Bh
EDX: EAX = FFFFFFFFFFFFFF9Bh

IDIV Instruction

 Thel DI Vinstruction divides an 8-, 16, or
32-bit signed divisor into either the AL, AX
or EAX register (depending on the
operand s size).

» Signed division requires that the sign bit be
extend into the AH, DX or EDX (depending
on the operand' s size) using CBW CWD or
Q.

IDIV Instruction — 8-bit Example

.data

byt eVal SBYTE - 48

. code
nov al, byteval ; dividend
cbw ; extend Al into AH
nov bl, 5 ; divisor

idiv bl ;. AL = -9, AH = -3

IDIV Instruction — 16-bit Example

.data

wor dVal SWORD - 5000

. code
nmov ax, wordVal ; dividend, |ow
cwd ; extend AX into DX
nmov bx, 256 ; divisor

idiv bx ; quotient AX = -19
; rem DX = -136

IDIV Instruction — 32-bit Example

.data

wor dVal SWORD - 50000

. code
nov eax, dwordVal ; dividend, |ow
cdq ; extend EAX into EDX
nov ebx, 256 ; divisor
idiv bx ; quotient EAX = -195

remai nder EDX = -80

Divide Overflow

» Divide Overflow occurs when a quotient is too large to fit
into the destination operand.

nov ax, 1000h
nov bl , 10h
div bl : AL can’'t hold 100h

* We are not yet equipped to handle it; the safest thing isto
try avoiding it by using a 32-bit divisor.

nov eax, 1000h

nmov ebx, 10h

div ebx ; EAX = 00000100h
Dividing By O

* Itisfairly easy to handle division by zero:

nov ax, dividend

nov bl , divisor

cnp bl, O

je NoDi vi deZer o

di v bl

NoDi vi deZero: ; Display error nessage

mplementing Arithmetic Expressions

e Implement var4 = (varl + var2) * var3

nov eax, varl
add eax, var?2
mul var 3 ; EAX = EAX * var3
jc t ooBi g ; unsi gned overfl ow?
nov var4, eax
j mp next

t 00Bi g: ; display error nessage

|mplementing Arithmetic Expressions

e Implement var4 = (varl *5) / (var2 — 3)

nov eax, varl ; left side

nov ebx, 5

mul ebx ;. EDX: EAX = product
nov ebx, var2 ; right side

sub ebx, 3

div ebx ; final division

nmov var 4, eax

Extended Addition and
Subtraction Instructions

» Extended addition and subtraction involves
adding or subtracting number of almost
unlimited size.

* We use the ADC and SBB instruction to add
with carry or subtract with borrow,
extending the operation beyond asingle
byte, word or doubleword.

ADC Instruction

+ ADC (Add With Carry) adds the source operand
and the carry flag to the destination operand.

e |tsformats are the same as the nov instruction:

ADC reg, reg
ADC mem reg
ADC reg, nmem
ADC mem inmm

ADC reg, inmm

Ex

Extended Addition Example

t ended_Add PRCC

Cal cul ates the sum of two extended integers
that are stored as an array of doubl ewords.
Recei ves ESI and EDI point to the two integers.
EBX points to the a variable that will hold the
sum

ECX i ndi cates the number of doubl ewords to be
added.

pushad
clc ; Clear the carry flag
L1: nov eax, [esi] ; get the first integer

adc eax, [edi] ; add the second integer
pushfd ; save the carry flag
nov [ebx], eax ; store partial sum
add esi, 4 ; advance all 3 pointers
add edi, 4
add ebx, 4
popfd
loop L1

Ex

adc word ptr [ebx], O
popad

ret

t ended_Add ENDP

SBB Instruction

+ SBB (Subtract With Borrow) subtracts the source
operand and the carry flag from the destination
operand.

* |tsformats are the same as the nov instruction:

SBB reg, reg
SBB mem reg
SBB reg, nem
SBB mem inmm
SBB reg, imm

SBB Instruction - Example

» Subtracting two 32-bit integers (100000000h - 1)

nov edx, 1 ; upper half
mov eax, O . | ower half
sub eax, 1 : subtract 1

sbb edx, O ; subtract upper half

