
Computer Organization and
Assembly Language

Lecture 5 – Procedures

Procedures
• As programs get larger and larger, it

becomes necessary to divide them into a
series of procedures.

• A procedure is a block of logically-related
instruction that can be called by the main
program or another procedure.

• Each procedure should have a single
purpose and be able to do its job
independent of the rest of the program.

Why Are Procedures Important?

• You need them to do input-output in
assembly language.

• Procedures help you gain major insight into
how the runtime stack is used.

• Your programs will grow to the point where
you either divide them into procedures or
you never understand the whole program.

Linking to an External Library

• Working With an external library allows
you to write programs that use procedures
that you do not necessarily have to know
how to write.

• The Irvine32.lib is an example of such a
library.

Linking and Link Libraries

• A link library is a file containing procedures that
have already been assembled in machine language
code. These procedures can be linked to a
procedure that is written separately.

• In order to use the procedure WriteString, your
program must contain
WriteString PROTO

• This informs the assembler that there is a separate
procedure that will be linked to the program,
which is called by writing
call WriteString

Linker Commands Options

• The linker combines the programmer’s object file
with one or more object files and link libraries.

• To create the .exe file at the command line, type
link32 hello.obj irvine32.lib kernel32.lib

• The make32.bat file contains the command
link32 %1.obj irvine32.lib kernel32.lib

Overall Structure

Your program Irvine32.lib

kernel32.lib

kernel32.dll

links
to

can link to

links to

executes

The Link Library Procedures

• The Irvine32 link library contains a large
collection of procedures that are useful in writing
32-bit assembly language programs.

• To understand what these procedures do, it is
important to understand these terms:
– Console - a 32-bit console windows running in

Window’s 32-bit text mode.
– Standard input - the keyboard
– Standard output - the screen

The Link Library Procedures (continued)

• ClrScr - Clears the screen and locates the cursor in the
upper left corner
call ClrScr

• CrLf - Advances the cursor to the beginning of the
next line.
call CrLf

• Delay - Pause the computer for x milliseconds, with x
stored in the EAX register
mov eax, 1000
call Delay

The Link Library Procedures (continued)
• DumpMem - writes a range of memory to standard

output in hexadecimal
.data
array DWORD 1, 2, 3, 4, 5, 6, 7, 8, 9, 0ah, 0bh
.code
main PROC

mov esi, OFFSET array ; starting offset
mov ecx, LENGTHOF array ; # of units
mov ebx, TYPE array ; double format
call DumpMem

• DumpRegs - Displays the contents of the EAX,
EBX, ECX, EDX, ESI, EDI, EBP, ESP, EIP and EFLAGS
registers in hexadecimal format.
call DumpRegs

The Link Library Procedures (continued)

• GetCommandTail - copies the program command line
into a null-terminated string. If the command is empty ,
the Carry Flag is set; if it’s non-empty, the Carry Flag is
cleared.

• If the command is
Encrypt file1.txt file2.txt

GetCommandTail would save this line, including the
name of the files.

.data
cmdTail BYTE 129 DUP(0) ; empty buffer
.code

mov edx, OFFSET cmdTail
call GetCommandTail ; filss the buffer

The Link Library Procedures (continued)
• GetMSeconds- returns the number of milliseconds that

have elapsed since Midnight., placing them in the EAX
register.

.data
StartTime DWORD ?
.code

call GetMSeconds
mov StartTime, eax

L1: ; Execute a loop here
Loop L1
call GetMSeconds
sub eax, StartTime; EAX contains loop

 ; time in milliseconds

The Link Library Procedures (continued)

• GoToXY- moves the cursor to a given row and column.
The column number (X-coordinate) is DL register and the
row number (Y-Coordinate) is in the DH register.

mov dh, 10 ; Row 10
mov dl, 20 ; Column 20
call GoToXY ; Locate cursor
call GetMSeconds

The Link Library Procedures (continued)

• Random32 – Returns a pseudorandom number which is
returned in the EAX register. It uses an input called the
seed, which is initialized by the Randomize procedure. IF
you want the number within the range 0 to n-1, place n in
the EAX register before calling RandomRange.

call Randomize
mov ecx, 10

L1: call Random32
; Use or Display random value in EAX
; register
mov eax, 5000
call RandomRange ; Num. is 0 to 4999
loop L1

The Link Library Procedures (continued)

• ReadChar – Reads a single character from standard input
which is returned in the AL register. the character is not
echoed on the screen.

.data
char BYTE ?
.code

call ReadChar
mov char, al

• ReadHex – reads a 32-bit hexadecimal integer from
standard input and returns it in the EAX register. (Either
A-F or a-f can be used as digits).

• .data
hexval DWORD ?
.code

call ReadHex
mov HexVal, eax

The Link Library Procedures (continued)

• ReadInt – Reads a 32-bit integer from standard
input which is returned in the EAX register. After
the optional sign, there may only be digits.

• .data
intVal DWORD ?
.code

call ReadInt
mov intVal, eax

The Link Library Procedures (continued)

• ReadString – reads a string of characters from standard
input stopping when the user presses Enter. It returns # of
bytes read in the EAX register. The EDX register must
contain the offset where the string is to be stored.

• .data
buffer BYTE 50 DUP (?) ; Holds the string
byteCount DWORD ? ; Holds the string

; length
.code

mov edx, OFFSET buffer ; String’s Pointer
mov ecx, (SIZEOF buffer)-1; Max. Length
call ReadString ; Read It!
mov byteCount, eax ; Save # of

; characters

The Link Library Procedures (continued)

lightMagenta = 13lightBlue = 9magenta = 5blue= 1

white = 15lightCyan = 11lightGray = 7cyan = 3

yellow = 14lightGreen = 10brown = 6green = 2

lightRed = 12gray = 8red = 4black= 0

• SetTextColor – sets the current foreground and
background colors for text output

• The background color is multiplied by 16 and added to the
foreground color.
mov eax, white + (blue*16); white on blue
call SetTextColor

The Link Library Procedures (continued)

• WaitMsg – displays the message “Press [Enter] to
continue..” and pauses the program until the user presses
the Enter key.
call WaitMsg

• WriteBin – writes an integer to standard output in ASCII
binary format. The value must be in the EAX register.

.code
mov eax, 12346AF9h
call WriteBin

; displays 0001 0010 0011 0100 0110 1010 1111 1001

• WriteDec – writes a 32-bit unsigned integer to standard
output that was placed in the EAX register.

mov eax, 2957ffffh

call WriteDec ; displays “295”

The Link Library Procedures (continued)

• WriteHex – writes a 32-bit unsigned integer placed in the
EAX register to standard output in 8-digit hexadecimal
format. Lead zeros are inserted as necessary.
mov eax, 7fffh

call WriteHex ; displays: “00007FFF”
• WriteInt – writes a 32-bit signed integer to standard

output. The value must be in the EAX register.
.code

mov edx, 216543

call WriteInt ; displays: “+216543”

The Link Library Procedures (continued)

• WriteString – writes a null-terminated string to standard
output. The string’s offset must be placed in the EDX
register.
.data
prompt BYTE “Enter your name: “, 0
.code

mov edx, OFFSET prompt
call WriteString

The Irvine32.inc Include File

; Include file for Irvine32.lib
(Irvine32.inc)

INCLUDE SmallWin.inc
; MS-Windows prototypes, structures, and constants
.NOLIST

; Last update: 1/27/02
;--
; Procedure Prototypes
;--
ClrScr PROTO ; clear the screen
Crlf PROTO ; output carriage-return / linefeed
Delay PROTO ; delay for n milliseconds
DumpMem PROTO ; display memory dump

DumpRegs PROTO ; display register dump
GetCommandTail PROTO ; get command-line string
GetDateTime PROTO, ; get system date and time

startTime:PTR QWORD
GetMseconds PROTO ; get milliseconds past midnight
Gotoxy PROTO
IsDigit PROTO ; return ZF=1 if AL is a decimal digit
Randomize PROTO ; reseed random number generator
RandomRange PROTO ; generate random integer in

specified range
Random32 PROTO ; generate 32-bit random integer
ReadInt PROTO ; read signed integer from console
ReadChar PROTO; reach single character from console
ReadHex PROTO ; read hexadecimal integer from console
ReadString PROTO ; read string from console
SetTextColor PROTO ; set console text color

WaitMsg PROTO ; display wait message, wait for Enter key
WriteBin PROTO ; write integer to output in binary

; format
WriteChar PROTO ; write single character to output
WriteDec PROTO ; write unsigned decimal integer to

;output
WriteHex PROTO ; write hexadecimal integer to

; output
WriteInt PROTO ; write signed integer to output
WriteString PROTO ; write null-terminated string to

; output

; Copy a source string to a target string.
Str_copy PROTO,
 source:PTR BYTE,
 target:PTR BYTE

; Return the length of a null-terminated string..
Str_length PROTO,

pString:PTR BYTE

; Compare string1 to string2. Set the Zero and
; Carry flags in the same way as the CMP instruction.
Str_compare PROTO,

string1:PTR BYTE,
string2:PTR BYTE

; Trim a given trailing character from a string.
; The second argument is the character to trim.
Str_trim PROTO,

pString:PTR BYTE,
char:BYTE

; Convert a null-terminated string to upper case.
Str_ucase PROTO,

pString:PTR BYTE

;-----------------------------------
; Standard 4-bit color definitions
;-----------------------------------
black = 0000b
blue = 0001b
green = 0010b
cyan = 0011b
red = 0100b
magenta = 0101b
brown = 0110b
lightGray = 0111b
gray = 1000b

lightBlue = 1001b
lightGreen = 1010b
lightCyan = 1011b
lightRed = 1100b
lightMagenta = 1101b
yellow = 1110b
white = 1111b
.LIST

Library Test Program

TITLE Testing the Link Library (TestLib.asm)
; Testing the Irvine32 Library
INCLUDE Irvine32.inc
CR = 0Dh ; Carriage Return
LF = 0Ah ; Line Feed

.data
str1 BYTE "Generating 20 random integers "

BYTE "between 0 and 990:", CR, LF, 0
str2 BYTE "Enter a 32-bit signed integer: ", 0
str3 BYTE "Enter your name: ", 0
str4 BYTE "The following key was pressed: ", 0
str5 BYTE "Displaying the registers:",

BYTE CR, LF, 0
str6 BYTE "Hello, ", 0

buffer BYTE 50 dup(?)
dwordVal DWORD ?

.code
main PROC
; Set text color to black text on white

background:
mov eax, black + (16*white)
call SetTextColor
call ClrScr ; clear the screen
call Randomize ; reset Random Number

; Generator

; Generate 20 random integers between 0 and 990
; Include a 500 millisecond delay

mov edx, OFFSet str1 ; display message
call WriteString
mov ecx, 20 ; loop counter
mov dh, 2 ; screen row 2
mov dl, 0 ; screen column 0

L1: call GoToXY
mov eax, 991 ; indicate range+1
call RandomRange ; EAX = random integer
call WriteDec
mov eax, 500
call Delay ; pause for 500 msec
inc dh ; next screen row
add dl, 2 ; move 2 col.to the right
loop L1

call CrLf ; new line
call WaitMsg ; "Press [Enter] ..."
call ClrScr ; clear screen

; Input a signed decimal integer and redisplay it
; in various formats:

mov edx, OFFSET str2 ; "Enter a 32-..."
call WriteString
call ReadInt ; input the integer
mov dwordVal, eax ; save in memory
call CrLf ; new line
call WriteInt ; display as signed int.
call CrLf
call WriteHex ; display in hexadecimal
call CrLf
call WriteBin ; display in binary
call CrLf

; Display the CPU registers
call CrLf
mov edx, OFFSET str5 ; "Displaying … "
call WriteString
call DumpRegs ; display the registers
call CrLf

; Display a memory dump
mov esi, OFFSET dwordVal ; Start OFF.
mov ecx, LENGTHOF dwordVal ; # of dwords
mov ebx, TYPE dwordVal ; size of dword
call DumpMem ; display memory
call CrLf ; new line
call WaitMsg ; "Press [Enter].."

; Ask the user to input their name:
call ClrScr ; clear screen
mov edx, OFFSET str3 ; "Enter your name": "
call WriteString
mov edx, OFFSET buffer ; the buffer pointer
mov ecx, SIZEOF buffer-1 ; max. # of chars.
call ReadString ; input your name
mov edx, OFFSET str6 ; "Hello, "
call WriteString
mov edx, OFFSET buffer ; Display your name
call WriteString
call CrLf

exit
main ENDP

END main

Stacks

• A stack is a last-in-first-out data structure
that is manipulated by means of three
operations:
– Push - add an item to the stack
– Pop - remove the most recent item from

the stack
– Empty - true if nothing is on the stack;

false if there is at least one item on the
stack.

Runtime Stack

• The runtime stack is a memory array that is
managed directly by the CPU using the SS
and ESP registers.

• In Protected mode, the SS register holds a
segment descriptor and is not modified byu
user programs; the ESP register holds a 32-
bit offset into some memory location on the
stack.

The Intel Processor’s Stack

• The stack in an Intel processor is a special
memory area.
– The stack is a temporary holding area for

addresses and data.
– Most of the data held here allows a program to

return (successfully) to the calling program and
procedures or to pass parameters.

– The stack resides in the stack segment.

Stack Operations - Push

00000006 ESP 00000006

ESP000000A5

Before After

mov eax, 00000A5h
push eax

00000FFC

00001000

00000FF8

00000FF4

00000FFC

00001000

00000FF8

00000FF4

Stack Operations - Push (continued)

00000006

000000A5

ESP 00000006

000000A5

00000001

00000002 ESP

Before After

mov ebx, 00000001h
mov ecx, 00000002h
push ebx
push ecx

high

low low

high

Stack Operations - Pop

00000006

000000A5

00000001

00000002 SP

00000006

000000A5

00000001 SP

Before After

pop eax
high

low low

high

Uses of the Stack
• There are several important uses of stacks in

programs:
– A stack makes an excellent temporary save area for

registers, allowing a program to use them as a scratch
area and then to restore them.

– When a subroutine is called, the CPU saves a return
address on the stack, allowing the program to return to
the location after the procedure call.

– When calling a procedure, you can push arguments on
the stack , allowing the procedure to retrieve them.

– High-level languages create an area on the stack inside
subroutines where procedure store local variables and
them discard them when it leaves the procedure.

Stack Operations - PUSH
• PUSH Instruction

– Decrements ESP and copies a 16-bit or 32-bit register or
memory operand onto the stack at the location indicated by
SP.

– With 80286+ processors, you can push an immediate
operand onto the stack.

– Examples:
push ax ; push a 16-bit register operand
push ecx ; push a 32-bit register operand
push memval ; push a 16-bit memory operand
push 1000h ; push an immediate operand

Stack Operations - POP
• POP Instruction

– copies the contents of the stack pointed to by
SP into a register or variable and increments
SP.

– CS and IP cannot be used as operands.
– Examples:

pop cx ; pop stack into 16-bit register
pop memval; pop stack into 16-bit memory

operand
pop eds ; pop stack into 32-bit register

Other Stack Operations – PUSHFD & POPFD

• PUSHFD and POPFD Instructions
– PUSHFD pushes the EFLAGS register

onto the stack, preserving it in case it
changes.

– POPFD restores the EFLAGS registers.
– Example

pushfd ; save the flags
call display_sub ;call a subroutine
popfd ; restore the flags

Other Stack Operations – PUSHA &
PUSHAD

• PUSHA (286+) pushes AX, CX, DX, BX, SP, BP,
SI and DI onto the stack in the above order.

• POPA restores the registers saved using PUSHA
• PUSHAD (386+) pushes EAX, ECX, EDX, EBX,

ESP, EBP, ESI and EDI onto the stack in the
above order.

• POPAD restores the registers saved using
PUSHAD.

Example: Reversing A String
TITLE Reversing a String (RevStr.asm)
INCLUDE Irvine32.inc
.data
aNAme BYTE "Abraham Lincoln", 0
nameSize = ($-aName) - 1

.code
main PROC
; Push the name on the stack

mov ecx, nameSize
mov esi, 0

L1: movzx eax, aName[esi] ; get character
push eax
inc esi
loop L1

; Pop the name from the stack, in reverse
; and store in the aName array

mov ecx, nameSize
mov esi, 0

L2: pop eax
mov aName[esi], al
inc esi
loop L2

; Display the name
mov edx, OFFSET aName
call WriteString
call CrLf

exit
main ENDP

END main

Procedures

• In general, there are two types of subprograms:
functions and procedures (or subroutines).
– Functions return a value (or result).
– Procedures (or subroutines) do not.
– The terms procedures and subroutines are used

interchangeably although some languages use one term
and others use the other.

– Calling a procedure implies that there is a return. Also
implies is that the state of the program, (register values,
etc.) are left unaffected when the program returns to the
calling procedure or program.

PROC and ENDP Directives

• PROC and ENDP mark the beginning and end of a
procedure respectively.
.code
main proc
… …
call MySub
… …
main endp

; Nb: procedures cannot overlap
MySub proc ; one must have endp before
… ; the next can have proc
ret
MySub endp

Nested procedure calls

• A procedure may call other procedures.
• The list of return addresses (as well as other data) is saved on

the stack, with the most recently called procedure’s return
address and data on top.

• main proc sub2 proc
call sub1 …
mov eax, … call sub3
… ret
main endp sub2 endp
…

sub1 proc sub3 proc
call sub2 …
ret ret
sub1 endp sub3 endp

The exit Instruction

• While all other procedures end with the ret
instruction, exit is used by the main procedure.

• exit is actually an not an instruction but an alias
for
INVOKE ExitProcess, 0
the Windows system function for terminating

programs
• In Irvine16.inc, it is defined as

mov ah, 4ch
int 21h

Local and Global Labels
• Be default, code labels have local scope, limited to the

procedures in which they are located.
• By ending a label with a double colon, the scope become

global and it can be referenced outside the current
procedure.
main PROC

jmp L2 ; error!
L1:: exit ; global label

main endp
sub2 PROC
L2: ; local label

jmp L1 ; OK
ret

sub2 endp

Passing Parameters

• Passing arguments in registers
– The most common method for passing parameter

between the calling program (or procedure) and the
procedures that it calls is through the registers

– It is efficient because the called procedure has
immediate and direct use of the parameters and
registers are faster than memory.

– Example: WriteInt
.data
aNumber DWORD 234
.code

mov eax, aNumber
call WriteInt

Preserving Registers
• Ordinarily procedures have the responsibility to preserve register

contents.
– This ensures that the main procedure has no surprises.
– What would happen here if WriteInt modified CX?

.data
DECIMAL_RADIX = 10
LIST_COUNT=20
aList dw LIST_COUNT dup(?)
.code
 mov ecx, LIST_COUNT
 mov ebx, DECIMAL_RADIX
 mov esi, offset aList
L1: mov eax, [si]
 call WriteInt
 add esi, size aList
 loop L1

Using Registers to Return a Value

• Some functions will use a register as a method of
returning a value to the calling procedure:

SumOf proc
push eax

 mov eax, ebx
add eax, ecx
pop eax ; Error – AX reset to orig. value
ret

SumOf endp

Procedure ArraySum
ArraySum PROC
;--
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI - the array offset
; ECX = # of elements in array
; Returns EAX - the sum of the array
;--

pushesi ; save ESI, ECX
pushecx
mov eax, 0 ; Sum = 0

L1: add eax, [esi] ; Sum = Sum + x[i]
add esi, 4 ; Point to next integer
loopL1 ; Repeat for array size

pop ecx
pop esi
ret

ArraySum ENDP

Calling ArraySum
TITLE Driver for Array Sum (ArrayDr.asm)
INCLUDE Irvine32.inc
.data
array DWORD 10000h, 20000h, 30000h, 40000h
theSum DWORD ?
.code
main PROC

mov esi, OFFSET array ; ESI points to array
mov ecx, LENGTHOF array ; ECX = array
count
call ArraySum ; calculate the sum
mov theSum, eax ; returned in EAX
call WriteHex ; Is it correct?
exit

main ENDP
ArraySum PROC… …

END main

Procedure goes here

Flowchart For ArraySum

begin

push esi, ecx

eax = 0

add eax, [esi]

add esi, 4

ecx = ecx -1

cx > 0?yes pop ecx, esi endno

Flowchart For ArrayDr

begin

mov esi, offset array

mov ecx, lengthof array

mov theSum, eax

end

call arraysum

Print theSum

USES Operator

ArraySum PROC USES esi ecx
; ESI, ECX automatically saved

mov eax, 0 ; Sum = 0
L1: add eax, [esi] ; Sum = Sum + x[i]

add esi, 4 ; Point to next integer
loop L1 ; Repeat for array size

; ECX, ESI automatically popped
ret

ArraySum ENDP

Example: Returning A Value

SumOf PROC ; sum of 3 integers
push eax ; Save EAX
add eax, ebx ; Calculate the sum
add eax, ecx ; of EAX, EBX ECX
pop eax ; Lost the Sum!!!
ret

SumOf ENDP
; We DON’T pop the register with the return
; value

Integer Summation Program Pseudocode

• In designing larger programs, dividing the specific
tasks into separate procedures in extremely
helpful:
Main

ClrScr ; Clear Screen
PromptForIntegers

WriteString ; Display Prompt Message
ReadInt ; Input Integer

ArraySum ; Sum the Integer
DisplaySum

WriteString ; Display output message
WriteInt ; Display Integers

Structure Chart

ClrScr

WriteString ReadInt

PromptForIntegers ArraySum

WriteString ReadInt

DisplaySum

Summation
Program (main)

Procedure Stub
;---
ArraySum PROC
;
; Calculates the sum of an array of 32-bit integers
; Receives: ESI points to the array, ECX = array size
; Returns: EAX = sum of the array elements
;---

ret ; Sum is in EAX

ArraySum ENDP

Sum2 Program
TITLE Integer Summation Program (Sum2.asm)
; This program inputs multiple integers from the

user,
; stores them in an array, calculates the sum of the
; array and displays the sum

INCLUDE Irvine32.inc

IntegerCount = 3 ; array size

.data
prompt1 BYTE "Enter a signed integer: ", 0
prompt2 BYTE "The sum of the integers is : ", 0
array DWORD IntegerCount DUP(?)

.code
main PROC

call ClrScr
mov esi, OFFSET array
mov ecx, IntegerCount
call PromptForIntegers
call ArraySum
call DisplaySum
exit

main ENDP

;---
PromptForIntegers PROC
;
; Prompts the user for an array of integers and fills
; the array wioth the user's input.
; Receives: ESI points to the array, ECX = array size
; Returns: nothing
;---

pushad ; save all registers

mov edx, OFFSET prompt1 ; prompt address
L1: call WriteString ; display prompt

call ReadInt ; Read next integer
call CrLf ; go to next line
mov [esi], eax ; store in array
add esi, 4 ; point to next int.
loop L1 ; repeat
popad ; restore registers
ret

PromptForIntegers ENDP

;---
ArraySum PROC
;
; Calculates the sum of an array of 32-bit integers
; Receives: ESI points to the array, ECX = array size
; Returns: EAX = sum of the array elements
;---

push esi ; save ESI, ECX
push ecx
mov eax, 0 ; set the sum to zero

L1: add eax, [esi] ; add each integer to sum
add esi, 4 ; point to next integer
loop L1 ; repeat for array size

pop ecx ; Restore ECX, ESI
pop esi
ret ; Sum is in EAX

ArraySum ENDP

;---
DisplaySum PROC
;
; Displays the sum on the screen
; Receives: EAX = the sum
; Returns: Nothing
;---

push edx ; Save EDX
mov edx, OFFSET Prompt2 ; Display message
call WriteString
call WriteInt ; Display EAX
call CrLf

pop edx ; Restore EDX
ret

DisplaySum ENDP
END main

