Computer Organization and Assembly Language

Lecture 2 – x86 Processor Architecture

- CPU (*C*entral *P*rocessing *U*nit) or Processor - is the brain of the computer.
- In the PC, the Processor is in the Intel 80x86 or Pentium family.

Reading From Memory

- Memory access is an important factor in understanding program execution speed because memory access via the system bus is much slower than the CPU clock.
- The clock cycles that are wasted while waiting for operands to be fetched are called *wait states*.

Cache Memory

- Cache memory saves data received fetched from or written to memory. Since it is much faster than conventional memory, there are fewer wait states.
- Level-1 cache is built into the processor.
- Level-2 cache is located on separate chips near the processor.

Multitasking

- An operating system that can run more than one process (or task) at once is called *multitasking*.
- Since most computers have only one processor, they multitask by giving each process a small portion of processor time called a *time slice*.
- The computer must be able to switch processes quickly, which means that they can store the process's state before switch.
- Round-robin scheduling is a typical scheduling algorithm where there is a strict rotation between the active processes.

	32-bit I	Register	
31	General Purpose	Index	
EAX	AX	EBP	
EBX	BX	ESP	
ECX	СХ	ESI	
EDX	DX	EDI	
		Segment	
	Status and Control	CS	
EFLAGS	Flags	SS	
EIP	IP	DS ES	
		FS	
		GS	

Flags

There are two types of flags: control flags (which determine how instructions are carried out) and status flags (which report on the results of operations.

Control flags include:

- *Direction* Flag (DF) affects the direction of block data transfers (like long character string). 1 = up; 0 - down.
- *Interrupt* Flag (IF) determines whether interrupts can occur (whether hardware devices like the keyboard, disk drives, and system clock can get the CPU's attention to get their needs attended to.
- *Trap* Flag (TF) determines whether the CPU is halted after every instruction. Used for debugging purposes.

The Intel Microprocessor Family (continued)

- 80386 or *i386* (1985) used 32-bit registers and a 32-bit data bus. It could operate in real, protected or virtual mode. In virtual mode, multiple real-mode programs could be run.
- *i486* The instruction set was implemented with up to 5 instructions fetched and decoded at once. SX version had its FPU disabled.
- The Pentium processor had an original clock speed of 90 MHz and cold decode and executed two instructions at the same time, using *dual pipelining*.

Intel Core Processor Family

- Intel introduce the Core family of processors in 2006, which are more powerful than the Pentium processors that preceded them.
- So far they include:
 - Core 2 Duo 2 processors codes, 1.8-3.3 GHz, 64 bit, 6 MByte L2 cache.
 - Core 2 Quad 4 processors codes, up to 12 MByte L2 cache, 1333 MHz front side bus.

Calculatin	g Absolute Addresses
	emory has its own address, with om 0 up through highest memory
e v	sed in instructions) and physical ata and instructions are stored) are not ranslation process.
• There are two hexad	ecimal formats used used by Intel
processors:	
– 32-bit segment-offse	t address (e.g.,08F1:0100)
 20-bit absolute addre 	ess (e.g., 09010)
Segment value:	0 8 F 1 (0)
Offset:	0 1 0 0
Absolute address	09010

The Motherboard

- The motherboard has connections to all or most of the following:
 - CPU
 - External cache memory
 - Main memory SIMMs or DIMMs
 - ROM BIOS
 - IDE cables (for hard disks and CD-ROM drives)
 - Sound synthesizers
 - Parallel, serial, USB, video, keyboard, joystick, and mouse connections
 - Network adapters
 - PCI Bus Connectors for sound cards, graphics cards, data acquisition boards and other I/O devices.

Video Output

- The video adapter control the display of both text and graphics.
- The video adapter consists of:
 - the video controller, which is a special-purpose microprocessor which controls what appears where on the screen.
 - video display memory, which stores what is displayed where on the screen.
- All text and graphics is stored in video RAM and sent to the monitor via the video controller.

