Computer Organization and Assembly Language

Lecture 1 - Basic Concepts

Virtual Machine

High-level language	Level 5
Assembly language	Level 4
Operating System	Level 3
Instruction Set Arch.	Level 2
Microarchitecture	Level 1
Digital Logic	Level 0

The Intel Microprocessor Family

- The Intel family owes its origins to the $\mathbf{8 0 8 0}$, an 8 -bit processor which could only access 64 kilobytes of memory.
- The 8086 (1978) had 16 -bit registers, a 16 -bit data bus, 20bit memory using segmented memory. The IBM PC used the $\mathbf{8 0 8 8}$, which was identical except it used an 8-bit data bus.
- 8087 - a math co-processor that worked together with the 8086/8088. Without it, floating point arithmetic require complex software routines.
- 80286 - ran in real mode (like the $8086 / 8088$) or in protected mode could access up tp 16 MB using 24 -bit addressing with a clock spped between 12 and 25 MHz . Its math co-processor was the 80287.

The Intel Microprocessor Family (continued)

- 80386 or $\mathbf{i 3 8 6}$ (1985) - used 32-bit registers and a 32 -bit data bus. It could operate in real, protected or virtual mode. In virtual mode, multiple real-mode programs could be run.
- i486 - The instruction set was implemented with up to 5 instructions fetched and decoded at once. SX version had its FPU disabled.
- The Pentium processor had an original clock speed of 90 MHz and cold decode and executed two instructions at the same time, using dual pipelining.

Number Systems - Base 10

The number system that we use is base 10 :

$$
\begin{aligned}
1734 & =1000+700+30+4 \\
& =1 \times 1000+7 \times 100+3 \times 10+4 \times 1 \\
& =1 \times 10^{3}+7 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}
\end{aligned}
$$

$$
\begin{aligned}
724.5 & =7 \times 100+2 \times 10+4 \times 1+5 \times 0.1 \\
& =7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1}
\end{aligned}
$$

Why use base 10 ?

Number Systems - Base 2

For computers, base 2 is more convenient (why?)
$10011_{2}=1 \times 16+0 \times 8+0 \times 4+1 \times 2+1 \times 1=19_{10}$ $100010_{2}=1 \mathrm{x} 32+0 \times 16+0 \times 8+0 \times 4+1 \times 2+0 \times 1=34_{10}$
$101.001_{2}=1 \mathrm{x} 4+0 \times 2+1 \mathrm{x} 1+0 \times 0.5+0 \times 0.25+1 \times 0.125$

$$
=5.125_{10}
$$

Example - $\quad 1101011_{2}=$?

$$
10110111_{2}=?
$$

$$
10100.1101_{2}=?
$$

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used because it is convert them into binary (base 2) and vice versa.

$$
\begin{aligned}
8 \mathrm{CE}_{16} & =8 \times 256+12 \times 16+14 \times 1 \\
& =2048+192+14 \\
& =2254 \\
3 \mathrm{~F} 9 & =3 \times 256+15 \times 16+9 \times 1 \\
& =768+240+9=1017
\end{aligned}
$$

Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16 :
$100011001110_{2}=100011001110=8 \mathrm{CE}_{16}$
$11101101110101001_{2}=11101101110101001=1$ DBA 916
$10110001010000010111_{2}=?_{16}$
$101101010010111011_{2}=?_{16}$

Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:
F3A5 ${ }_{16}=11110011101001012$
$76 \mathrm{EF}_{16}=01110110111011112$
$\mathrm{AB} 3 \mathrm{D}_{16}=?_{2}$
15 C. $38_{16}=?_{2}$

Converting From Decimal to Binary

Converting From Decimal to Binary

17 R	0
8 R	1
4 R	0
2 R	0
1 R	0
0 R	1

100010_{2}

Converting From Binary to Decimal

$$
\begin{aligned}
1001010_{2} & =1 \times 64+0 \times 32+0 \times 16+1 \times 8+0 \times 4+1 \times 2+0 \times 1 \\
& =64+8+2=74_{10}
\end{aligned}
$$

$$
1101101011_{2}=1 \times 512+1 \times 256+0 \times 128+1 \times 64+1 \times 32
$$

$$
+0 \times 16+8 \times 1+0 \times 4+1 \times 2+1 x 1
$$

$$
=512+256+64+32+8+2+1=875_{10}
$$

Signed numbers

| 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$=75_{10}$

\uparrow
sign bit

| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$=-75_{10}$

\uparrow
sign bit 01001011
10110101
100000000
\vee
overflow bit

Binary Bit Position Values

2^{0}	1	2^{8}	256
2^{1}	2	2^{9}	512
2^{2}	4	2^{10}	1024
2^{3}	8	2^{11}	2048
2^{4}	16	2^{12}	4096
2^{5}	32	2^{13}	8192
2^{6}	64	2^{14}	16384
2^{7}	128	2^{15}	32768

Binary, Decimal and Hexadecimal Equivalents

Binary	Decimal	Hex.	Binary	Decimal	Hex.
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011^{1}	11	B
0100	4	4	1100	12	C
0101	5	5	1101	13	D
0110	6	6	1110	14	E
0111	7	7	1111	15	F

Types of Numbers

Storage Type	Bits	Range (low-high)
Signed byte	7	-128 to +127
Unsigned byte	8	0 to 255
Signed word	15	$-32,768$ to $+32,767$
Unsigned word	16	0 to 65,535
Signed doubleword	31	$-2,147,483,648$ to $+2,147,483,648$
Unsigned doubleword	32	0 to $4,294,967,295$
Signed quadword	63	$-9,223,372,036,854,775,808$ to
		$+9,223,372,036,854,775,807$
Unsigned quadword	64	0 to $8,446,744,073,709,551,615$

ASCII representation of characters

- ASCII (American Standard Code for Information Interchange) is a numeric code used to represent characters.
- All characters are represented this way including:
- words (character strings)
- numbers
- punctuation
- control characters
- There are separate values for upper case and lower case characters:

A	65	z	122
B	66	blank	32
Z	90	$\$$	52
a	97	0	48
b	98	9	57 x

Boolean Values and Expressions

- A boolean value is either true or false
- Boolean expressions involve boolean values and boolean operators.
- There are three primary boolean operators about which we are interested:
- NOT
- AND
- OR

The not Operator

$\underline{\mathbf{x}}$	$\underline{\sim \mathbf{x}}$
F	T
T	F

The And Operator

$\underline{\mathbf{X}}$	$\underline{\mathbf{Y}}$	$\underline{\mathbf{X} \wedge \mathbf{Y}}$
F	F	F
F	T	F
T	F	F
T	T	T

The OR Operator

$\underline{\mathbf{X}}$	$\underline{\mathbf{Y}}$	$\underline{\mathbf{X} \vee \mathbf{Y}}$
F	F	F
F	T	T
T	F	T
T	T	T

Operator Precedence

Examples:
$\sim x \vee y$
$\sim(x \vee y)$
$x \vee(y \wedge z)$

| NOT |
| :---: | :--- |
| AND |
| OR |$\quad \uparrow$| Higher |
| :--- |

NOT, then OR
OR, then NOT
AND, then OR

Boolean Functions - An Example

Boolean functions take boolean inputs and produce boolean outputs, e.g., $\sim x \vee y$

$\underline{\mathbf{x}}$	$\underline{\sim} \underline{\mathbf{x}}$	\mathbf{y}	$\underline{\sim \mathbf{x} \vee \mathbf{y}}$
F	T	F	T
F	T	T	T
T	F	F	F
T	F	T	T

Boolean Functions - Another Example

E. g., $x \wedge \sim y$

$\underline{\mathbf{x}}$	\mathbf{y}	$\underline{\sim \mathbf{Y}}$	$\sim \mathrm{x} \wedge \mathrm{y}$
F	F	T	F
F	T	F	F
T	F	T	T
T	T	F	F

One Last Example - $(\mathrm{y} \wedge \mathrm{s}) \vee(\mathrm{x} \wedge \sim \mathrm{s})$

x	y	s	$\mathrm{y} \wedge \mathrm{s}$	$\sim \mathrm{s}$	$\mathrm{x} \wedge \sim \mathrm{s}$	$(\mathrm{y} \wedge \mathrm{s}) \vee(\mathrm{x} \wedge \sim \mathrm{s})$
F	F	F	F	T	F	F
F	F	T	F	F	F	F
F	T	F	F	T	F	F
F	T	T	T	F	F	T
T	F	F	F	T	T	T
T	F	T	F	F	T	T
T	T	F	F	T	F	F
T	T	T	T	F	F	T

