

Lecture 1 – Basic Concepts

The Intel Microprocessor Family

- The Intel family owes its origins to the *8080*, an 8-bit processor which could only access 64 kilobytes of memory.
- The *8086* (1978) had 16-bit registers, a 16-bit data bus, 20bit memory using segmented memory. The IBM PC used the *8088*, which was identical except it used an 8-bit data bus.
- 8087 a math co-processor that worked together with the 8086/8088. Without it, floating point arithmetic require complex software routines.
- *80286* ran in real mode (like the 8086/8088) or in protected mode could access up tp 16MB using 24-bit addressing with a clock spped between 12 and 25 MHz. Its math co-processor was the 80287.

Number Systems - Base 10

The number system that we use is base 10:

$$1734 = 1000 + 700 + 30 + 4$$

$$= 1x1000 + 7x100 + 3x10 + 4x1$$

$$= 1x10^3 + 7x10^2 + 3x10^1 + 4x10^0$$

$$724.5 = 7x100 + 2x10 + 4x1 + 5x0.1$$
$$= 7x10^{2} + 2x10^{1} + 4x10^{0} + 5x10^{-1}$$

Why use base 10?

Number Systems - Base 2

For computers, base 2 is more convenient (why?) $10011_2 = 1x16 + 0x8 + 0x4 + 1x2 + 1x1 = 19_{10}$ $100010_2 = 1x32 + 0x16 + 0x8 + 0x4 + 1x2 + 0x1 = 34_{10}$

 $101.001_{2} = 1x4 + 0x2 + 1x1 + 0x0.5 + 0x0.25 + 1x0.125$ = 5.125₁₀ <u>Example</u> - 1101011_{2} = ? 10110111_{2} = ?

 $10100.1101_2 = ?$

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used because it is convert them into binary (base 2) and vice versa.

 $8CE_{16} = 8x256 + 12x16 + 14x1$ = 2048 + 192 + 14= 2254

$$3F9 = 3x256 + 15x16 + 9x1$$
$$= 768 + 240 + 9 = 1017$$

.

Binary Bit Position Values				
20	1	28	256	
21	2	29	512	
2 ²	4	210	1024	
2 ³	8	211	2048	
24	16	212	4096	
25	32	213	8192	
26	64	214	16384	
27	128	215	32768	

Binary	Decimal	Hex.	Binary	Decimal	Hex.
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	10111	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Types of Numbers			
Storage Type	Bits	Range (low-high)	
Signed byte	7	-128 to +127	
Unsigned byte	8	0 to 255	
Signed word	15	-32,768 to +32,767	
Unsigned word	16	0 to 65,535	
Signed doubleword	31	-2,147,483,648 to +2,147,483,648	
Unsigned doubleword	32	0 to 4,294, 967,295	
Signed quadword	63	-9,223,372,036,854,775,808 to	
		+9,223,372,036,854,775,807	
Unsigned quadword	64	0 to 8,446,744,073,709,551,615	

Boolean Functions – An Example

Boolean functions take boolean inputs and produce boolean outputs, e.g., $\sim x \lor y$

X	<u>~X</u>	Y	$\underline{x \lor y}$
F	Т	F	Т
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
L			<u> </u>

Boo	olean Fu	nctions	– Anoth	er Exam	ple
E. g.,	х ∧~у				
	<u>X</u>	<u>Y</u>	<u>~Y</u>	~x ^ y	
	F	F	Т	F	
	F	Т	F	F	
	Т	F	Т	Т	
	Т	Т	F	F	
					, ,

Х	y	S	y∧ s	~s	$X \wedge \sim S$	$(y \land s) \lor (x \land \neg s)$
F	F	F	F	Т	F	F
F	F	Т	F	F	F	F
F	Т	F	F	Т	F	F
F	Т	Т	Т	F	F	Т
Т	F	F	F	Т	Т	Т
Т	F	Т	F	F	Т	Т
Т	Т	F	F	Т	F	F
Т	Т	Т	Т	F	F	Т