
Computer Organization and Assembly

Language

Lecture 1 – Basic Concepts

Virtual Machine

High-level language

Assembly language

Operating System

Instruction Set Arch.

Microarchitecture

Digital Logic

Level 4

Level 5

Level 2

Level 1

Level 0

Level 3

The Intel Microprocessor Family

• The Intel family owes its origins to the 8080, an 8-bit
processor which could only access 64 kilobytes of
memory.

• The 8086 (1978) had 16-bit registers, a 16-bit data bus, 20-
bit memory using segmented memory. The IBM PC used
the 8088, which was identical except it used an 8-bit data
bus.

• 8087 - a math co-processor that worked together with the
8086/8088. Without it, floating point arithmetic require
complex software routines.

• 80286 - ran in real mode (like the 8086/8088) or in
protected mode could access up tp 16MB using 24-bit
addressing with a clock spped between 12 and 25 MHz. Its
math co-processor was the 80287.

The Intel Microprocessor Family (continued)

• 80386 or i386 (1985) - used 32-bit registers and a 32-bit

data bus. It could operate in real, protected or virtual

mode. In virtual mode, multiple real-mode programs could

be run.

• i486 - The instruction set was implemented with up to 5

instructions fetched and decoded at once. SX version had

its FPU disabled.

• The Pentium processor had an original clock speed of 90

MHz and cold decode and executed two instructions at the

same time, using dual pipelining.

Number Systems - Base 10

The number system that we use is base 10:

1734 = 1000 + 700 + 30 + 4

= 1x1000 + 7x100 + 3x10 + 4x1

= 1x103 + 7x102 + 3x101 + 4x100

724.5 = 7x100 + 2x10 + 4x1 + 5x0.1

= 7x102 + 2x101 + 4x100 + 5x10-1

Why use base 10?

Number Systems - Base 2

For computers, base 2 is more convenient (why?)

100112 = 1x16 + 0x8 + 0x4 + 1x2 + 1x1 = 1910

1000102 = 1x32 + 0x16 + 0x8 + 0x4 + 1x2 + 0x1 = 3410

101.0012 = 1x4 + 0x2 + 1x1 + 0x0.5 + 0x0.25 + 1x0.125

= 5.12510

Example - 11010112 = ?

101101112 = ?

10100.11012 = ?

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used

because it is convert them into binary (base 2) and vice

versa.

8CE16 = 8x256 + 12x16 + 14x1

= 2048 + 192 + 14

= 2254

3F9 = 3x256 + 15x16 + 9x1

= 768 + 240 + 9 = 1017

Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16:

1000110011102 = 1000 1100 1110 = 8 C E 16

111011011101010012 = 1 1101 1011 1010 1001 = 1 D B A 916

101100010100000101112 = ?16

1011010100101110112 = ?16

Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:

F3A516 = 1111 0011 1010 01012

76EF16 = 0111 0110 1110 11112

AB3D16 = ?2

15C.3816 = ?2

Converting From Decimal to Binary

19

9 R 1

4 R 1

2 R 0

1 R 0

0 R 1

100112

Converting From Decimal to Binary

34

17 R 0

8 R 1

4 R 0

2 R 0

1 R 0

0 R 1

1000102

Converting From Binary to Decimal

10010102 = 1x64 + 0x32 + 0x16 + 1x8 + 0x4 + 1x2 + 0x1

= 64 + 8 + 2 = 7410

11011010112 = 1x512 + 1x256 + 0x128 + 1x64 + 1x32

+ 0x16 + 8x1 + 0x4 + 1x2 + 1x1

= 512 + 256 + 64 + 32 + 8 + 2 + 1 = 87510

Signed numbers

sign bit

0 1 000 1 1 1 = 7510

sign bit

1 0 111 0 0 1 = -7510

01001011

10110101

000000001

overflow bit

Binary Bit Position Values

20

21

22

23

24

25

26

27

29

210

211

212

213

215

214

281

4

8

64

16

32

128

2

1024

512

256

2048

4096

8192

16384

32768

Binary, Decimal and Hexadecimal Equivalents

1001

1010

10111

1100

1101

1111

1110

10000000

0001

0010

0011

0100

0101

0110

0111

Binary BinaryDecimal DecimalHex. Hex.

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0 8

9

10

11

12

13

14

15

8

A

B

C

D

9

F

E

Types of Numbers

Storage Type Bits Range (low-high)

Signed byte 7 -128 to +127

Unsigned byte 8 0 to 255

Signed word 15 -32,768 to +32,767

Unsigned word 16 0 to 65,535

Signed doubleword 31 -2,147,483,648 to +2,147,483,648

Unsigned doubleword 32 0 to 4,294, 967,295

Signed quadword 63 -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807

Unsigned quadword 64 0 to 8,446,744,073,709,551,615

ASCII representation of characters

• ASCII (American Standard Code for Information Interchange) is a

numeric code used to represent characters.

• All characters are represented this way including:

– words (character strings)

– numbers

– punctuation

– control characters

• There are separate values for upper case and lower case characters:

A 65 z 122

B 66 blank 32

Z 90 $ 52

a 97 0 48

b 98 9 57x

Boolean Values and Expressions

• A boolean value is either true or false

• Boolean expressions involve boolean values and

boolean operators.

• There are three primary boolean operators about

which we are interested:

– NOT

– AND

– OR

The NOT Operator

FT

TF

~xx

The AND Operator

TTT

FFT

FTF

FFF

X ∧∧∧∧ YYX

The OR Operator

TTT

TFT

TTF

FFF

X ∨∨∨∨ YYX

Operator Precedence

NOT

AND

OR

Examples:

~x ∨ y NOT, then OR

~(x ∨ y) OR, then NOT

x ∨ (y ∧ z) AND, then OR

Higher

precedence

Boolean Functions – An Example

TTFT

FFFT

TTTF

TFTF

~x ∨∨∨∨ yy~xx

Boolean functions take boolean inputs and produce boolean

outputs, e.g., ~x ∨ y

Boolean Functions – Another Example

FFTT

TTFT

FFTF

FTFF

~x ∧ y~Yyx

E. g., x ∧ ~y

One Last Example - (y ∧ s) ∨ (x ∧ ~s)

TFFTTTT

FFTFFTT

TTFFTFT

TTTFFFT

TFFTTTF

FFTFFTF

FFFFTFF

FFTFFFF

(y ∧ s) ∨ (x ∧ ~s)x ∧ ~s~sy ∧ ssyx

