Harish Sarma

Honors Thesis

Computer Science and Mathematics Major

May 2005

The Question of Ethics in Computer Programming

My fascination with computers began at the tender age of twelve. Growing up in East Africa, my exposure to the world of computers was modest at best. It was not until the early nineties that a personal computer finally made it into my household. I was immediately drawn towards the intricacies of the computer keyboard and especially the monitor. My earliest memories are of awe and pure amazement. It may seem incomprehensible today but the world I knew then, existed devoid of the use of computers. In the strictest sense, computers were far too expensive and decidedly complex. For this reason, their application was strictly at banks and other wealthy institutions that could afford them. Businesses hardly owned computers and it followed that personal computers were almost a pipe dream.

Computers were part of the school curriculum from grade school right through high school. Despite this, time spent on computers was limited. There were far too many students in comparison to the strained school resources. While students expressed a lot of interest in learning how to operate a computer, the resource bottleneck ensured that actual student-computer interaction was at a minimum. A big attraction of the computer was the introduction of computer games. Arcade machines and Atari systems had already enthused the average kid to imagine a world of make-believe. Many computer scientists will agree that one of the biggest attractions within the major was its connection to video gaming.

Building on my new fascination, I acquainted myself with the “Commodore 64” that I had requested of my parents. Aside from playing computer games, I also stumbled upon codebooks for the Commodore. These books detailed a step-by-step coding process for the creation of simple on-screen printouts or “dumps”. These programs were extremely trivial and markedly basic but still enamored my mind during its formative stages. Using simple characters like an asterisk, I was able to type in code that spelled out different words. At this early stage, the idea of control however minute was very appealing. The Commodore 64 had introduced me to computer programming at the very basic level. I vividly remember simply typing code from books and anxiously anticipating the results to come. Even at this early stage, seeing the fruits of my labor come into being brought me an indescribable joy. My affinity for computer games fuelled my growing interest in computer programming. With time, I picked up advanced books for the Commodore and began to try new methods in programming.

In the course of the next few years, I was finally introduced to the personal computer. The computer I refer to was an archaic PC-XT with 640 Kilobytes of Random Access Memory (RAM) and had a Central Processing Unit (CPU) that clocked 1 megahertz. In comparison to the computers today, my father’s unit was antiquated. Nevertheless, I was totally enamored when he granted me access to his then prized possession. I had just begun a few classes of Beginner’s All-purpose Symbolic Instruction Code (BASIC) programming while at high school. I was anxious to try out the many things that had been discussed while in class. I promptly began to type out a program that used logic to determine if the user was old enough to drive. The embedded logic was fairly simple; if the user entered an age greater than or equal to 18 (legal driving age in Kenya) then the program would say exactly that. If they were younger than 18, then the program would print out a “sorry, you are too young to drive” message. Even at this juncture, I had become well aware of the power in computing logic. In addition, I had been made aware of the power that I could influence the outcome of a program simply by ensuring that my logic was sound. Computers, I had realized, only did as they were programmed to do. The understanding of computer programming would subsequently be demystified over the next two years.

1997 was the year that I got my own personal computer. It was a defining moment for me especially given that I began my true exploration of computers and their capabilities. I had begun to consolidate my knowledge base of computing languages by picking up several newer languages such as C and Pascal. I was experimenting with newer programming methods. In addition, these new languages allowed for a certain flexibility that was very welcome. The improved language syntax meant that as a programmer, I was exposed to a greater sense of control. More importantly, the host of programming keywords had a multitude of functions. When combined with one another, these keywords brought even greater functionality to the programming process. In time, by trying new things and implementing small applications, I garnered a stronger understanding of programming and its guiding principles. Throughout my formative years, I had been exposed to the creative and stimulating nature of programming and was therefore already immersed in its culture.

By the time I got to college, I was fairly conversant with the basics of programming and therefore my transition was fairly smooth. A closer look at the college curriculum reveals certain methods of teaching that have become popular over the years. Repeating a small specific task in a variety of languages is one way to learn the basic structure of different languages without having to spend endless hours on each one. Another common means of teaching involves assigning problems that require the use of specific syntax in order to get the desired results. The combination of both these methods helps students to understand the various options available to them when programming. By empowering students in this way, programming classes are a pivotal way to teach the possibilities that are available in every language. In the same vein, languages have their own nuances. Certain things that may be applicable in one language may have no bearing in another and so forth. It is clear that in the technologically driven world of today, language understanding is even more critical than ever before. The number of languages has mushroomed while their individual content has swelled as well. The bulk of languages in the workplace today have so many functions and syntax operatives that programmers are unaware of. In many instances programmers may not even know limitations that exist in many of these languages. Most programming students study the fundamentals of a language and go about learning a few specific skills so as to gain a greater grasp of the language’s syntax. From this point on, it is purely up to the programmer to take the initiative and further his/her knowledge on any specific language. Often times, this extra mile is rarely sought after, given that computing languages present programmers with a variety of workarounds. This can be viewed as a positive and a negative. It is clear that having many options usually means that there is no set formula for success in a task. In many instances, this flexibility can be very convenient. Other times this ambiguity can create discrepancies in the algorithms that are in play. Every option uses up system resources in a different way. Why is one option chosen instead of another?

Practically speaking, there would seem to be no real connection between programming and ethics. Most individuals view programming as more of a mystery of code chunks that eventually perform specific tasks. Indeed, programming seems to have little depth to the lay-man. Yet the common perception that programming is monotonous and tedious is fairly far off the mark: the programming model involves the use of invention and innovation to a certain degree. Every problem model is unique and in this way, solutions to computing problems may be likened to an escape sequence. The ambiguous nature of programming solutions allows for flexibility in coding as well as room for errors. Many code-time decisions are never tracked until “bugs” are reported well into production and too late to effect necessary code changes. In addition, most programmers working on a time sensitive project would choose the simplest means to an end. This reflects on a deadline based programming society that puts an emphasis on completing a job within a time frame rather than stressing the need for correctness. This problem lends to the bigger issue that corporations face today. Programmers are paid to code, and the sooner they complete their tasks, the sooner the finished product will land on the shelves. There exists an inherent framework in place that perhaps inadvertently compromises the importance of ethical decision making in the programming process.

The essence of programming is the structure of the computer algorithm. So far, I have introduced the idea that there exist a variety of different paths that a programmer may take when coding for a solution. Each of these individual solutions is based on an algorithm. The ethical imperative in question is how “correct” is it to use one solution over another? Indeed algorithms have varying complexities and this lends to my argument surrounding their application. Since it remains clear that choice of an algorithm is usually left to the programmer, it behooves me to ask if this responsibility has ever been abused. I present a rhetorical question on the basis of the old adage “power corrupts”. It is valid here given that the decision to pick one algorithm over another is squarely on the programmer’s shoulders. Algorithms present many pros and cons for their implementation. Some algorithms require the use of more resources while others are more resource efficient but take sizeable chunks of time to code. The final decision rests with the programmer to pick a suitable algorithm and be able to implement it. Prior to this, I had made mention of the different factors that influence the choice of an algorithm. Its ease of implementation, project deadlines and understanding of complexity are all key elements of programming that influence whether one algorithm will be picked over another.

The experience level of the programmer is another intangible that is difficult to gauge based simply on the programmer’s previous experience. There are many individuals who have vast experience with specific programming languages but are totally unfamiliar with others. In addition, years of experience with a single language is no barometer for the programmer’s expertise. While experience breeds language familiarity, if the programmer is used to employing only a few of a languages’ capabilities, then the language may have been under utilized. This brings to the fore a key problem in programmer evaluation: language-specific knowledge. While a general working knowledge of a computing language may suffice during a short internship, most fulltime programming jobs require greater use of a language’s operatives. Programmers are assessed on their work product and ability to deliver a final product within set deadlines. Programmers that are better versed in a particular language may be comfortable using specific methods that have served them well over the years. The drive to learn new coding methods is job specific.

There exists a small clique of programmers who go out of their way to learn new methods simply on a whim. Given this background, it seems only logical that programmers are unique individuals, each with their own style and preferences. One may even liken them to artists as each created program is like a new canvas, almost never repeated in its entirety. Unlike art, programming code influences everything from space technology to microwave chips. The very fabric of our technological society is laced with the gifts of computer science. It becomes clear in this thesis that freedom to design a code solution without responsibility for the end result is the very bottleneck that undermines the ethics of computer programming. The problem is exacerbated by time-to-market concerns overshadowing the need for quality and by customers’ tolerance of faulty software. To this end there exist many case studies that will be introduced in later sections. In addition, there will be an analysis of programmer responsibility, software testing issues and a scrutiny of the programming process as a whole. As the thesis progresses, I expect to better the reader’s understanding of the current ethical issues within the IT industry. Ideally as the thesis draws to a close, the need to outline viable solutions or simply state newer implementation measures will become more apparent.

Since the thesis is steeped in ethical reasoning, a better fluid definition of its connection to programming should be forthcoming. Programming has been described as an intentional human behavior. It is conducted by individuals who have values and therefore ethics (Petascale.org). Since there is nothing natural about programming, it would imply that the individuals who write the code decide how ethically correct it is. Fundamentally, it is every individual coder that decides if a program should be ethically bound or not. Since individuals have values, it follows that technology is never value-neutral. After decades of computing behind us, it is safe to state that the programming process is anything but value neutral. It has been proven that writing of even the simplest of programs invokes the programmer’s values in some way (petascale.org). In a very literal sense, programs may be viewed as a form of communication. The source code may likewise be seen as a form of expression. There also exist a multitude of programs that are used specifically for communication purposes. Software such as Dragon Speaking-Naturally and AOL instant messenger are common examples of widely used communication tools that are easily available. If all the above reasoning holds true, by deductive reasoning, certain specifics become clear. Firstly, that programmers do have the opportunity to make ethical code time decisions and secondly, that they communicate their values through their code (Petascale.org). A closer examination of this analysis reveals how closely knit programming and ethical concerns are. In today’s multitude of communication options, the choice of ethical reasoning is farthest from the minds of CEOs while its importance is markedly underscored.

Ethical responsibility has grown to be a hot topic in the last 30 years given the rising number of concerns within the software engineering field. It has grown to be a widely accepted norm that the job of a software developer involves a lot more than simply applying technical skills (Sommerville, 14). There are aspects of acceptable behavior that are not bounded by laws and rather by the notion of professional responsibility. There are four key areas that come to mind when reassessing where professional responsibility has its biggest impact. The issue of confidentiality ought to be raised irrespective of whether a formal confidentiality agreement has been signed. Secondly, misrepresentation of engineer competence is wrong. Knowingly accepting work which is above and beyond one’s experience is a big ethical concern. Thirdly, employees need to be made aware of intellectual property rights. There is an excess of open source code available freely on the web. Despite this, engineers are constantly caught tinkering with code that is not free or shareware (Malcolm, 4). Finally, computer misuse is a growing concern among software developers all over. Be it playing computer games or instant messaging to even disseminating viruses in some cases, employees have been guilty of many concerns. The ethical drive behind the control of these and other problems describes the fundamental questions. How much ambiguity can the computing world be privy to if such realities cannot be checked? More importantly, if ethics are as important as some feel, why has there not been a greater drive to curtail unethical activity?

Professional societies have stepped up to the challenges outlined above. The ACM and the IEEE (Institute of Electrical and Electronic Engineers) in conjunction with the British Computer Society published a code of professional conduct or code of ethics (Sommerville, 14). Members of these organizations undertake to follow the code when they sign up for a membership. As members, they are expected to follow the ethical statuettes that validate sound decision making logic. Fundamentally, the codes of conduct simply outline ethical behavior in the workplace. Issues pertaining to computer use and ethical reasoning form the core of the code of ethics. The ACM and IEEE went a step further by introducing a joint code of ethics and professional practice (www.acm.org). In an effort to make the joint code of ethics more appealing to programmers and non-programmers alike, the code has been meshed into an even mix of aspirations and details. The latter deals with the legal and more tedious matters while the former is more focused on a higher level of abstraction.

Having looked through the joint code of ethics, a number of clauses peaked my interest. The last clause (eighth) discussed the need for software engineers to “participate in lifelong learning regarding the practice of their profession”. Having spoken to a fair share of developers while on several of my internships, I had grown accustomed to accepting that most programmers had their niche field. Almost every programmer had a specialty and had a specific skill set. When compared to clause eight, it seems as though the clause is in conflict with the industry standard. An example of this conflict is when analyzing how a specialty COBOL mainframe coder would update his skills. More often than not, it is unlikely that the programmer will be going out of his way to study strongly typed languages or even newer technologies such as Microsoft.NET. It does not seem logical for a programmer to spend time learning new skills instead of increasing knowledge where he/she earns their bread and butter. In an ideal world, software engineers will spend a quota of their spare time updating their knowledge base and possibly learning newer skills. In retrospect, the gravity of the situation is very much in disagreement with clause eight. Clauses one, two and three deal with the issue of final product quality which remains the bone of contention for many software clients. The clauses emphasize the need to meet the highest professional standards. A general overview of the industry reveals a severe dearth of quality control measures as companies struggle with tight budgets and impossible deadlines. Clause five almost acts as a deterrent to all clauses preceding it. The fifth clause discusses how managers and software engineering leaders are meant to promote an ethical approach to the management of software development. Ironically, it is the same managers that set audacious project deadlines and proceed to run their operations with iron-clad ideals. There is a fine line between running a tight ship and expecting miracles from your employees. Like programs, programmers are fallible as well and given the work pressures, conflicts over work and ethics are highly likely. While the code of ethics serves as a solid standard for ethical practice on the broad spectrum, the ability to enforce its tenets is a different story altogether. There exists the need to have programmer specific clauses that deal with the real ethical dilemmas in the industry today. The very fact that books on programming ethics are few and far between is a testament to the absence of relevant research in this field. Independent bodies like the ACM and IEEE are well intentioned but lack the global backing to tackle the finer details of programming ethics. Clearly, until the global community can see the real results of poor programming practices, an ethics standard is eons away.

The Computing Industry and Its Ethical Stance

Is there an ethics in software engineering? Many programmers argue that coding is a neutral craft. Is it possible to categorize programmers along with lawyers and doctors, who have a history of ethical inquisitions? For many years, writers, filmmakers and scientists have been accused of ignoring the long-term ethical implications of their respective crafts. The question I pose relates to the programming aspect of software engineering and whether there exists a need for ethical questioning. The misused work of atomic physicists, grotesquely violent filmmaking and badly reported news segments are some examples of ethical concerns that are valid. In society today, the role of computing technology has become that much more important in every sense. Our use of computers in practically every facet of our lives is a testament to the need for ethical bounds. On the surface, one may feel that computing has a lot less to do with ethics than filmmaking perhaps. When studied more closely it is clear that pop culture in the 21st century has a lot of ties to the unprecedented growth of computing culture. It is for this reason that this subject is more and more relevant with each passing day.

Software written today has ramifications in the real world. If this were not true, it would not be very useful (Gill, Informit). Software can potentially affect society in a most astonishing of ways. Like evolution, the unpredictable nature of software engineering has many inventors second guessing the next big application. Software has grown, become more complicated and in some cases, burdens the hardware more than it solves a problem. I refer to the ever increasing demands of newer software applications given that often times, releases of software updates usually require more PC power in order to run well. The bottom line is that with such unchecked growth in application size and programming prowess, who is responsible in the event of a failure? Worse still, can anyone be singled out in the event of a disaster? The aforementioned questions raise the issue of responsibility in the software engineering field. In a society that is constantly overwhelmed by class action lawsuits, is it logical that responsibility is still a very grey area within Information Technology (IT)? Even in the 21st century it is probably too early to predict but it is a safe bet that in the near future, created code will have a much greater potential to do both harm and good (Gill, Informit).

The question of responsibility has been raised but there has been no mention of where to draw the line or even who is responsible for enforcing these boundaries. Given that ethics is a moral issue that warrants the utmost care and attention, it seems only fair that there must be set standards in place if there are ever going to be serious ethical repercussions. The international IT community will need to be educated on these guidelines and consequences in the event of a breach. Ideally, a universal standard of coding and testing would provide the necessary legislation under which coding standards may be based upon. With the international community growing more and more involved in the software cycle and with more countries exporting their code, the need for universally accepted guidelines becomes even more important than ever before. It has been widely accepted that with the growing numbers of coders, code lines and software companies, the problem is mushrooming. It is clear to see that with the shift towards technology solutions for everyday activities, there has been a greater demand for programmers; this reiterates the point that keeping programmers and software companies in check is an absolute necessity given the current market. As for who should enforce the new standards is an open debate. Many would argue in favor of an ACM/IEEE controlled advisory body to put together guidelines given their vast experience with ethics issues in IT. Another option could be to introduce a fresh independent body that would conduct an industry wide analysis that encompasses the concerns I have outlined throughout the better part of this thesis.

 Tyson Gill is a well known and influential presenter on design, architecture, planning and coding. He is the director of information technology at Alitum Inc. and also teaches Visual Basic and Microsoft.Net programming at the University of California. He has an upcoming book titled “Planning Smarter: Creating Blueprint-Quality Software Specifications”, which in many ways is part of the answer to my ethical questions. In a recent article, he asks if programmers are “simply hired laborers who stick the brick where we’re directed, knowing that the arch will fall and the bridge will collapse?” A common paradox for many programmers is what to do when asked to implement architectures that are simply bad (Gill, Informit). Coding for such projects that are predestined for failure seems like a fruitless act. The bigger question is whether programmers have any professional imperative that would mandate the quality level of the code product. Are programmers aware of their abilities and if so, do they go the extra mile just to ensure that the final product is a masterful piece? In retrospect, are programmers willing to write anything, no matter how shoddy, because that is what they are paid to do? If doctors worked on the same principle of working at a price, patients would probably stroll out with extra ears and a loss of a limb that was bothersome, simply because they had asked for it and it had been done by the doctor, no questions asked. Clearly the question here is whether programmers ask questions of their projects. There is a chasm of difference between internalizing one’s concerns and rethinking involvement in a spotty project. Most coding jobs dictate their terms with the dollar amounts attached to them.

Many software developers can relate to a time when work was done for a manager that was hell bent on maintaining specifications. In the event of a developer initiating recommendations, the manager may even turn hostile as this may be viewed as a means to usurp powers (Gill, Informit). The hierarchical nature of the software creation process is a bottleneck in and of itself. If managers admit the fallibility of predefined specifications, it is tantamount to acknowledgement that the managers and their managers are resting on their laurels. In reality, most managers have been so far removed from the coding frontline that developers can see holes in specifications even before typing a line of code. With experience, software developers become very aware that even well-thought out plans are far from perfect. It is in the nature of the industry to constantly field curve-balls in the most unexpected circumstances. To complete a metaphor, think of a very pretty bookcase made to artistic precision but one that somehow cannot house any books. This bookcase is like many enforced projects, fundamentally useless and functionally bereft. Sadly, the vast majority of managers are so interested in ensuring that their personal targets are met that they lose sight of the bigger goal. A successful completion of projected modules is just the first step to usability and integration. A well made system sells itself while a badly designed one is always searching for takers.

Programmers today face varying ethical decisions based on some of the things we have already discussed. Given the slew of programming jobs that exist in the market, should programmers be obdurate when faced with bad projects and opt against working on them at the risk of losing their jobs? Instead, should a programmer simply do what he/she knows to do well, which is to code, and be uninvolved in the planning and design phases? These questions are genuine and impact the programming process in a multitude of ways. Occasionally, a gutsy programmer here and there will ignore the planner completely and implement what they think is the correctly specified code (Gill, Informit). The realities of this situation are such that it would take a self assured individual to even attempt such a thing and be ready to face the consequences regardless of whether they are good or bad. Indeed, there are “no absolutes in any ethical choice,” as quoted by Tyson Gill (Informit). The questions raised above are hardly easy to figure out. Rather, it is clear that serious thought must be put into the ethics of programming since it affects more than just the programmer and its intended user. Both software planners and programmers must be aware of the possibility that they could be wrong or are making the wrong decision. An inflexible programmer will spend more time arguing over personal preferences instead of the real issues like quality, reputation and of course, responsibility.

I recently broke a meta-carpal in my right hand and this prompted me to visit my hand specialist, Dr. Alan Freedman. He is a practicing doctor and a specialty plastic surgeon of several years. Over the last fifteen years, Dr. Freedman has built up his practice at its Great Neck, NY location and placed a strong emphasis on computerizing all processes. We talked about what I am working on in school and I enlightened him on the trials and tribulations of my thesis. Upon hearing of my efforts, he immediately began to nod his head in agreement and then proceeded to sigh in dismay. Dr. Freedman had been a victim of software sabotage. He proceeded to explain to me what he termed as the unscrupulous nature of development houses everywhere. As a doctor, he is expected to maintain financial and patient records in accordance with the laws of New York State. In order to have such a functional system, doctors with a large patient pool have been forced to implement a computerized solution in order to streamline their activities. Once the decision has been made, in a couple of weeks, several companies are reviewed and finally the “best” company for the job is tendered the position. Together with a savvy group of consultants, the “fully customizable” new age solution is finally ready to be implemented. Dr. Freedman expressed a deep sense of disdain when questioned about the specifics of his experience.

Dr. Freedman outlined two major bones of contention. The first was that these packages were falsely advertised right off the bat; their functionality was laughable at times; and, worse still, the companies resorted to using technical jargon so as to dissuade much questioning. The second issue he had was the inevitable sabotage that followed. If the doctor was unhappy with the package after using it for a while or wanted to switch to a newer system, the developers of the original software would shuffle their feet on whether conversions could be made. Essentially, programs had been coded such that switching systems would be near impossible. The blackmail that would follow would always be tagged with the option to “upgrade” the existing system for a fee. This is highly ironic given that the doctors are trying to switch complete systems. The software sabotage in some cases is also known as a “logic bomb”(Stanford). What is in play here is not simply specific to only the medical field. Numerous development houses stay viable because they tie up the hands of their clients. While it is widely accepted that programming styles are different for each programmer, adhering to predetermined templates is a good way of ensuring that programs are comprehensible. Development houses that rely on their software a great deal will go out of their way to make their code difficult to understand. According to Dr. Freedman, companies suddenly turn extremely hostile when they become aware of possible changes to the system. External consultants become reluctant to work on software that they are not certified to look at as warranty issues come into play. In this way, reproachable developers continue to offer yearly phone and on-site support at abysmal rates. The software cycle becomes a self-fulfilling prophesy as doctors have nowhere to turn without grinding their businesses to a halt.

The financial constraints of a medical office solution package are not to be taken lightly. With rising malpractice costs, the price for accurate record-keeping has gone up as well. Doctors have become more conscious of the need to computerize their operations for ease of access. The dearth of computing knowledge in the medical field is a very real concern given that more and more doctors are embracing full office IT solutions. In the late 1990’s, Enterprise Resource Packages (ERP) were all the rage given the industrial demands of the time. A fully customizable industry specific IT solution was a very attractive offering at a time when technology was being lapped up in gulps. The craze has since shifted to government and medical concerns. These two sectors have invested heavily in IT over the last couple of years and nothing seems to buck the trend. The fully automated doctor’s office handles everything from appointments to purchasing to billing. The industry demands are there for the taking today. Hearing the concerns of Dr. Freedman, my immediate thoughts were of the exploitation that was fairly rampant within the industry. While there have been many cases of software price inflations even between software development houses, it seems extremely harsh on the unknowing doctors who know little else other than how to run their practice. The realities of programming propagate this behavior even more. As of today, there are no laws prohibiting developers from selling and reworking software that is deemed imperfect. If this were so, it would be a safe bet to assume that companies such as Microsoft and Oracle would be defunct.

Indeed the nature of the software industry allows for programming leeway. Companies that code are expected to maintain a testing standard that is compliant with industry demands. Once again, these demands are extremely vague. Every software developer has code coverage standards that are unique. As it is clearly impossible to test each and every line of code, companies promise to test a certain percentage. Once again there are no rigid guidelines as to how much testing is enough or even, what it really encompasses. Therein lays the bigger problem concerning software development ambiguity. In a very real sense, the reason why doctors just like Dr. Freedman will continue to grimace at the thought of IT solutions has a lot to do with the haziness that engulfs the entire software development process. I am not simply going out of my way to put down the software industry but rather I strongly feel that the situation we have today is largely the result of unchecked activity. The callous nature of cut throat development houses is the catalyst for consumer-producer conflict. Medical and office staffs spend more time on product support hotlines than on productive work. As a matter of principle, selling a product that is defective or incomplete cannot be ethically sound. Furthermore, if clients pay for a product, they will expect occasional hiccups. The software industry has willfully latched onto this notion and condoned the shipping out of incomplete products. The entire future of programming seems fairly bleak if current trends are meant to set precedence. The very fundamentals of programming are in mathematical logic and if logic has been dispensed with altogether, then the direction of software development is anybody’s guess.

One of the most disturbing realities that were revealed to me by Dr. Freedman was what he called a “software bomb”. The look of horror in his eyes was in line with the reasons for his eerie labeling. The said “bomb” was a programmed routine within a software package that under instruction through the web or a timing sequence, would block total access from the software. In some cases, these routines would even erase the accessibility of files stored on the system. The malicious nature of these programming horrors become even more real when doctors are literally blackmailed into renewing their support contracts under the threat that they could lose everything. The threats are never direct and always implied. Common phrases like, “I am unsure if the files can be recovered and used on a different system” or “You will need to get a new license because the one you have is expiring and will not allow you any access”. Copy protection is a valid concern for all IT businesses; however, these are legitimate clients. The worst of companies turns immensely hostile once they become aware that a doctor is planning to ditch them for a competitor. It is especially in these times that doctors are most at risk.

Dr. Freedman explained that a very real fear for him was that one day he would arrive at his practice to discover that all his systems were down overnight. The “software bomb” he describes seems more like a sophisticated guilt trip that is focused on keeping clients from ever switching companies. The methods that companies employ to retain their clientele are much varied. The astounding thing is that with no clear regulations, a free market situation can be likened to playing Russian roulette. The key to understanding what is feasible within IT is understanding programming. Doctors admittedly have more pressing issues than to delve into the realm of computing and figure out the nuances of the aforementioned blackmail. Some companies simply have their representatives coerce and cajole doctors into understanding that “updating” to a newer version is the easier alternative. Whatever the means of deceit, the bottom-line has doctors across the world nervously purchasing software, signing support contracts and extensions purely out of the lack of knowledge or many other options.

As a developer myself, I find it increasingly difficult to accept that such Machiavellian ideals form the core of developer solutions. The idea of baiting clients and tying them up to binding contracts under the veil of disaster is simply appalling. The IT industry gains immense revenue from many doctors just like Dr. Freedman. The ethical individual in me shudders to ask whether this streamlined sabotage can ever be reversed. Fundamentally, proprietary software is owned by those who pay for it. It is a sad state of affairs when even the owners of the software can do little else but sit with their faces in their hands as they await some form of intervention. Given the magnitude of investment involved and the plight of unknowing doctors, this is a sickening ethical anomaly. Is it ethically correct to sell software that is known to have problems with functionality? How is it accepted in our society that engineers can go out of their way to make software immensely difficult to tweak or sometimes understand? Perhaps the real kicker is that millions of dollars will be spent this year on software that will fail miserably in doing what it was touted to do in the first place. In addition, because of the huge sums of money involved, these bug ridden behemoths will be reworked and redesigned all at the expense of the customer who stands confused, much like the proverbial lamb to the slaughter.

During a past internship at Martha Stewart Living Omnimedia in June of 2003, I sat down with my then boss in the media management division so as to gain a grasp of what my internship would entail. In about an hour he had gone over several fundamentals that the job would rely on and moreover, he detailed the company’s backend software that I would grow to rue in due course. The software in question was MAMBO®, a content media management system that was purchased so that it would greatly improve the sharing of media files throughout this vast company. When he introduced the software to me he said and I quote, “I didn’t want to say this on the interview but now that you are here, I can tell you that among the top five asset-file management systems out there, MAMBO® ranks at number seven”. Without batting an eyelid I asked if there was any chance the developers would take it back. At that point I was fairly green and clearly naïve. The developers of MAMBO® had reeled in a big fish in the guise of MSLO; this was just the beginning of a whole new ethical shamble. Like most software that came partly custom-built, MAMBO® suffered from a lack of cohesion. User friendliness was a pipe dream and sadly, the package barely did anything it was meant to do, right.

In due course, I learnt that the manager who gave the green light to purchase MAMBO® had been “made redundant” as the British would say. The company cited poor planning and insufficient research on the part of the manager. Like most managers, he was tied to a bottom line. In this case that meant, get the best deal for the best on show. The developers were a Californian company who felt little compassion for East coast companies that operated in a different time-zone. The developers were always three hours too slow to respond to urgent enquiries. After almost a year of restructuring and more than $1,000,000 in programming costs, MSLO was stuck with their lemon. I later found out that the developers had been searching for a big name client so as to announce themselves in the market and essentially test out their software on a company that would test its limits. Indeed this was a great experience for the developers, invaluable I am tempted to say. MSLO learned a harsh lesson on overdependence. The buggy MAMBO® system ground internal operations to a halt. Files that were once available with some effort were unavailable completely. A gutsy venture turned into a big bag of mixed blessings, mostly nightmarish ones. Between the ubiquitous finger-pointing and blame shifting, actual personnel productivity took a nosedive.

Over the course of two years, the developers of MAMBO® had made repeated promises of an upgrade to the imperfect system. Nothing was forthcoming and the assurances were only made to appease the company top brass. Admittedly, the executive board understood little about what was fundamentally wrong with the failed project. Many efforts by the IT higher-ups to expose its frailties met with muted response. The company had invested far too much in the product to bite the bullet and bid farewell. The resultant turmoil engulfed several tiers of the company IT wing. They had to make this product usable. This meant that countless hours were spent reporting errors and bugs to the developers. In addition, workarounds were identified and circulated throughout the company. When files would disappear or appear in all the wrong places, the company’s coders were put to work in order to figure out pointer issues.

Several in house consultants had to be engaged full time at the expense of MSLO just so that they may work out the MAMBO® kinks as they showed up. I vividly remember a Mr. Peter Kim who had been hired as the resident MAMBO® expert. His job was limited to waiting for the software to throw him an error which he would set out to resolve. His uncanny understanding of MAMBO® made him vital to the upkeep of the system. The great lengths that MSLO went in order to keep their forgetful procurement seem immense yet they mirror the actions of so many companies. As an intern I witnessed the agony of a stalled system that required serious downtime before resolutions would become available. Given the size of MSLO, it seemed that a legal battle would have been a good option. Unfortunately, legislation on this matter is much distorted. The ifs, ands and buts within each legal clause are enough to drive a layman insane. Fundamentally, any company that proves it is working on the software while being under contract safeguards its personal interests. In this case development houses are free to claim that their software is not perfect but is approaching that goal. In simple words, MSLO was a company in an IT quagmire and to date, has not shaken off the MAMBO® shackles.

I quickly learned that a big reason that I had been hired as an intern was to form a workaround to the MAMBO® system. I was creating, verifying and updating new asset data files from previous years that had never managed to get “ingested” into the system. Right off the bat, MAMBO® had been a failure and despite the existence of MSLO’s well educated group of technology savvy IT professionals, there was no turning back. Companies today may borrow a leaf from horror stories like this and others. The problem lies squarely on the way software is regarded in general. As a purchased product, the developer ties their support teams to the software as a ready remedy provider. It almost seems as though companies expect to see failures when they invest in new technology. Why are companies the guinea pigs for the programming mishaps of development houses? Should companies affected by shoddy programming have the ability to recover portions of their investment if the purchased product is non-functional? As a community that prides itself on cutting edge research and technology, it upsets me a great deal when I come across some of the realities in play. Cheating clientele out of money is not just unethical, it is downright wrong. Perhaps the only way to drive home the gravity of this situation is for there to be legislative recommendations. Perhaps the answer to half-baked programming efforts is to put the developers on the spot and make them responsible for their work. After all, without any legal recourse, why would any company go out of its way to ensure that its practices were legitimate?

In the previous section, it was made apparent that programming is an astoundingly independent function. While many may argue that the level of autonomy given to programmers may vary, it is apparently clear that there exist problems within the ambiguity of the process. There are no rigid statuettes or codes of conduct that are adhered to by software developers. There exists the ACM/IEEE code of ethics that outlines an overall sense of ethics within the field. Despite this, there has not been a universal application of the code in the industry. Companies unequivocally agree that an ethics code is important but very few actually would swear by the ACM/IEEE code of ethics. In later chapters, a closer look at the code and its implications will be forthcoming. Additionally, testing is a vague notion in and of itself; by this I refer to the actualities of life where every possible test case cannot be tested feasibly. It remains true that companies that develop software expect to test their programs to a certain degree but cannot be held responsible for not covering every possibility. This raises the question regarding the soundness of programming content. How much testing is enough? Is it ever enough? Is testing an unquantifiable variable?

Program testing has been a hotly debated issue in many software engineering forums ever since error tracking and exception handling became programming mainstays. It remains clear today that given the complexity of programs today, it is hard to predict what a good or bad test-case is. A good test-case is one that can expose a fault so that it can be fixed before the software goes into production. A common way to ensure that software written in JAVA is sound is to use the JUnit framework(www.junit.org). This is a standard testing package for unit testing JAVA classes that the industry uses in order to gauge if a JAVA program can handle test cases. Though JUnit provides an efficient means to keep track of test suites and to rerun tests when the program is modified, i.e. for regression testing, it is still the tester’s or developer’s responsibility to write the test cases. It is safe to say that JUnit is the industry standard for testing in this language and is used vastly throughout the world. To date, this package has also had its fair share of development issues. More recently, companies that code JAVA have had to implement JUnit verification packages such as InspectionGadgets (www.intellij.org). The reasons for this range from code problems within JUnit to unchecked performance issues that JUnit was testing incorrectly. In many cases, small bugs would cause inconsistencies and developers would be confounded by errors that were hard to identify since they were internal JUnit bugs.

Beta testing has been in use by companies for quite a few years. In fact, it is one of the premier methods of testing within the industry. Unlike in the past where beta testing was performed by a group of technology savvy testers, beta testing is now done by a wide range of individuals that may or may not have any testing experience (Salber, 3). “Beta-testers” as they are known, have the responsibility to test the robustness of an application. Since most users are adept at using an application, it takes a special type of application tester to be able to identify possible problem areas within a system. The advent of public-betas has changed the overall situation radically. Most online users today are not even aware that they are using beta versions as in many cases they aren’t labeled clearly. Most are initialed by a serial number with a “b” at the end. As a means of gaining attention, many companies are resorting to releasing numerous public release beta versions of their software every few weeks. Essentially, every user is a potential beta-tester given the ubiquitous nature of the web. The reality here is that alpha versions (initial releases of application code) and even betas may contain dangerous bugs (Salber, 4). Consumer confidence is at an all-time low given the “crash and restart” mentality that most users have come to accept with applications. In actuality, giving away buggy software is hurting the industry a lot more than helping it.

Daniel Salber argues that ethical frameworks such as PAPA(1986) and ImpactCS(1995) are examples that are inadequate to deal with the issues discussed so far. ImpactCS focuses on teaching ethics and is hardly applicable within the industry. PAPA also suffers similar limitations and is therefore not a possible solution to the ethical control dilemma (Salber, 5). He also feels that computer ethics codes such as ones proposed by the ACM or IEEE are valuable but far too broad. They are fundamentally impractical to apply in the realm of software design. The goals of the ACM seem farfetched and impossible to implement. Unfortunately, the ethical concerns within the computing field have peaked the interests of more than a few individuals such as Mr. Salber and it has become clear that the frameworks in place are no means of control.

In a recent one on one interview with Michael Napoli of Antares IT, A fairly large communications and IT firm that has a long standing association with long island NY. I was able to pose the question of ethical programming standards with a view of understanding the corporate take on things. Mr. Napoli agreed that there were companies that chose to act unethical in their dealings with clients. He however raised the question of documentation. This is a section of development that occasionally does not get the attention that it ought to receive. He argued that often times, it was not the companies that were at fault for advertising the capabilities of their software; rather it was the implementers that ought to bear the burden of blame. Mr. Napoli felt that certain developers ignored documentation that came with applications and in this way, overlooked the warnings usually posted by the developers. He cited an instance where he had a development team that was stuck on a project for two weeks and only upon reading the documentation were they able to ascertain what had happened. It turns out that the functionality of the application would be compensated in certain circumstances; as it turned out, the developers had been trying to force an identified exception to work. After our discussion it became clear that the blame game philosophy within the computing industry was not to be taken lightly. Both sides of the industry fell that there are bigger shortcomings elsewhere. Once again the issue of responsibility creeps in and looms ominously. With both developers and consumers passing the buck back and forth, a real resolution to this dilemma is of utmost importance.
Testing is a software engineering concern as it details what possibilities for failure exist within a system. To this effect, exception handling techniques become vital especially given that most programmers use them purely in a cautionary manner. While they form a vital backend to the rigors of programming, the emphasis on what is needed in software testing is lacking in some ways. Moreover, software testing is not taken seriously by many companies in that well-researched techniques and recommendations are largely ignored or compromised due to time-to-market concerns. Since most companies are driven by profit margins and sales volume, program testing simply adds to the many hurdles that companies have to overcome. Unlike other stages in the development process program testing guidelines are not nearly as rigid. With many companies admitting that their code-coverage schemes are far from perfect, it becomes a game of Russian roulette when determining when the hammer will finally fall. I refer to companies like Microsoft that admit to code-coverage of at least 87% while most other companies aim to have at least 94% of their code executed by tests. This situation is far from ideal since code-coverage analysis is used to assure the quality of your set of tests, not the quality of the actual product (www.bullseye.com/coverage.html). It is easy to assume that testing is everyone’s responsibility when coding well helps to ensure that tests will pass. The old adage “prevention is better than cure” is strongly applicable in this situation given that with sound programming ethic, numerous errors would be eliminated well before the testing or code-coverage phases of development.
Given that testing is a pivotal phase of software development, it is surprising how more companies have not really attempted to formalize a training regimen for it. Effective testing is crucial in order to produce reliable and dependable systems. Some organizations under-staff their testing departments or engage new hires with mediocre talent. Disturbingly, some companies look towards failed programmers to form the core of their testing teams (Weyuker, 76). The reality of the software industry has made obvious the lack of respect that testing receives within the development process. On the horizon are a few companies that have started bucking the trend. AT&T, a global telecommunications giant, has invested heavily in a Software Test Engineer Professional Development Program (Weyuker, 76). The goals of this project are to attract quality employees for a career in testing and also to foster the growth of a permanent staff. Eliminating job turnover ensures that productivity and employee satisfaction are at a premium. Shortened development cycles and higher reliability are the intangibles within this project that will come to fruition much later. With a detailed six stage process that details the progress of a tester from a new hire to the management levels is a testament to AT&T’s prerogatives. The company is pushing very heavily for testing certification as well. The Quality Assurance Institute (QAI) is a well known institution that provides such certification. With QAI locations all over and a strict regimen to maintain certification, testers are being held in check ensuring that their skills do not nosedive upon the completion of training.

Thanks to the efforts of companies like AT&T, it may be time for other technology companies to borrow a leaf from this industry giant. In addition to the program, AT&T has gone one step ahead by introducing a level of specialization within the testing realm. Once basic training is complete, candidates are free to specialize in a section of testing that they wish to specialize in. This will allow for more flexibility within the company and therefore seek to match testers with appropriate jobs. While AT&T has not made it mandatory that all testers are certified, they certainly look very favorably on testers with a QAI background. In time, the company may seek to mandate the need for certification as a prerequisite to landing a tester’s job (Weyuker, 82).

I have included copies of code samples that I created while on specific programming internships that I will quote from in the following paragraphs. During my internship, I was expected to create threshold markers on a bar chart such that the levels of performance may be gauged. The threshold values were at 85% and 100% capacity and were therefore vital to understanding the graphs. While using Java, I made use of an open-source application known as JFreechart which was a charting utility. For the purposes of this project, I was using it to create 3D bar charts and pie charts. The former presented a very odd problem; I was trying to implement threshold lines as advertised by the software and for some reason, it would not label the thresholds with a title. While it would render the lines correctly, the labeling would never appear regardless of the amount of tinkering I attempted. The JAVA documentation on the software detailed how to implement thresholds and I followed this guide to the letter. Much to my chagrin, after hours of tries and retries, I had nothing to show for my efforts. Instead I was upset that my programming skills had taken a sudden nosedive. My project had to be put on hold for two days simply because there was no feasible way of creating a workaround. Since the charting utility was the application package being used for this project, a solution was needed in a hurry. After much agony and several days spent on online forums for program developers, I discovered one user that had posted something that mirrored my problem. The problem was a bug that had to be fixed by the developer and had not been addressed (Sarma, BarChart3DGenerator, 2). Essentially, if not for this posting, I would have probably attempted more and more methods of superimposing a title on the thresholds. The sad truth of the matter lies in the fact that the bug was one that affected an advertised feature of the software. Once this anomaly had been ascertained, I was able to alert my boss and seek alternative options to threshold rendering within this package.

A second instance where my ethical bounds were tested was later on in this project. There had grown a need to create datasets from a Microsoft® Excel spreadsheet. Essentially, the spreadsheet would provide all the data necessary and I had been asked to obtain the data and store it in a suitable format for retrieval. I had two options, to implement arrays and load up the arrays with values or to implement vectors. Since we were dealing with large volumes of data, the choice of method mattered quite a bit. When I ran both these options by my boss, he explained that both were sound options but since we were unsure how large the data groups would be, it would be safer to implement a vector solution. Sure enough I began to implement vectors for this section. Without any warning, my boss received a directive from the Vice President of Information Technology that a panel of executives was interested in seeing a demonstration of the project so far. In fact the demonstration was slated two days from the current date. Both my boss and I were in a fix; neither had expected a surprise demonstration and more importantly, full vector implementation of the system was impossible given the volumes of data. We sat down and consented to using arrays for the time being, ensuring that the array sizes were large enough to hold a large amount of data. The idea was that as long as we use arrays conscientiously, I would always get a chance to implement vectors without the pressures of time. Indeed when I conducted my first test runs of data capture using vectors, recasting the data and identifying pointer mistakes became infeasible given the time constraints (Sarma, DashboardExcelParser, 7-10).

By recasting, I refer to restoring a data item to its original form. Since vectors accept any data type, it becomes doubly important to ensure that the correct data type is used to recast it when retrieving the data. The miscellaneous pointer mistakes I referred to were based on the fact that programs rarely run perfect once they are written. In order to ensure that a program does what it is expected to do, the programmer must run numerous checks. In the final analysis, implementing vectors was going to be far too taxing within the time span that I had. I proceeded to implement an array based solution to the problem and made the presentation. It went off without a hitch and was a roaring success. I returned with a couple of thoughts at the end of it all. Firstly, suppose I had decided not to tell my boss of the options in my head and had simply proceeded to use arrays; would he have ever known? Secondly, we had agreed to redo all the work done in arrays to vector form in the future; if the system worked, was it necessary? Finally, programmers make crunch decisions like this all the time; is it not irksome that such power lies within the programmers’ reach?

 The thoughts detailed above form the crux of my ethical argument. It is clear in today’s programming setting that complete control of programmer functions is near impossible. It is still shocking that programmers do have a free run on how they code as long as the code is correct. Even companies that boast high percentile code coverage cannot anticipate what programmers will do. In fact most code coverage schemes simply search for logic within the programming and very rarely go in depth to assess if the code is ethically sound. In actuality, most companies cannot be bothered to investigate programming ethics as there are a host of other problems that they have to contend with. Between downsized budgets to tight production schedules, the last thing on the minds of project managers is how ethical his/her staff is. While it may be true that most project managers would shudder at the thought of being lied to by their trusted employees, it may not be too much of a stretch to believe that it has happened many times in the past. With the growing trend of smaller development houses attempting to reap richer rewards by working longer hours with fewer developers, this problem becomes significantly larger.

Cooperative coding was introduced by some companies as a means of having coders keep each other in check (utdallas.edu, 3). What effectively happened was that most cooperative coders would break up different sections of the application that would need to be worked on and work on them individually. Eventually all pieces would be brought together and pieced into one unit. This defeated the whole purpose of cooperative coding as it only seemed like a good decision at the boardroom level. A second method of development monitoring was double coding or eyeballing. Essentially, one programmer would code while another would look over their shoulder and either give advice or simply ensure that the code syntax was sound. This ran into two bottlenecks. Firstly, programmers got lazy and would stop caring about the coding process and leave their peers to do the coding alone. Secondly, it became too expensive to tie up one programmer by effectively having them watch over another programmer (utdallas.edu, 5). Given the pressures of economic downturns, it became more and more expensive to implement this method of control. In reality, programming required a different form of control, which would come directly from the programmer and would be enforced from the source. With no effective control measures in place keeping developers in check, the future of computer ethics seems even more jeopardized.

The History and Progress of Computer Ethics

With the galloping growth of computing technology, computer ethics has turned into the newest branch of ethics in the workplace over the last half of the twentieth century. Computing ethics may be viewed as an effort to apply theories like utilitarianism, Kantianism or virtue ethics to issues regarding the use of computer technology. Conversely, one may view computer ethics in a broader perspective including standards of professional practice, codes of conduct, aspects of computer law, public policy, corporate ethics and perhaps the sociology of computing (Stanford). In many ways, the best definition of computing ethics may be a symbiosis of both these ideas. Melding both these schools of thought reveals the depth that computing ethical concerns can reach.

Programming ethics concerns a more refined view of computing ethics. More importantly, programming ethics have a direct impact on the computing end product. The numerous lines of code that are written every minute are subject to the scrutiny of ethical reasoning. It is growing clear that computing technology is now an even bigger part of society than in previous generations. There exists a need to reinforce these changing trends with an ethics system that embraces the needs of our civilization. Common issues like privacy and anonymity have already been addressed by the computing community. In addition, legal recourse regarding intellectual property such as software and music piracy is being sought even as you read this. It is my firm belief that the next frontier of computing disputes exists in the grey area that is computing ethics. Programming ethics deals with the very real question of professional responsibility (Stanford). To date, programmers around the world are encouraged to gain certifications for their skills but there exists no real licensing to speak of. Indeed the liability of being a programmer is fairly difficult to gauge given that there aren’t any rules regarding professional responsibility. The ACM and IEEE code of ethics are guidelines at best and in many cases, cover only certain specific situations.

Norbert Weiner is widely considered by many to be the father of computer ethics. Wiener, in conjunction with a few colleagues, invented the science of information feedback. This was later called “cybernetics” and became an integral component of new technology that we now refer to as information and communication technology (ICT). An MIT professor by profession, he helped develop an antiaircraft canon capable of shooting down fast warplanes (Stanford). In 1950, Weiner published “The Human Use of Human Beings”. In this book, he laid down a very detailed foundation which even today forms a basis for computing ethics and research. More importantly, the book sought to discuss some of the fundamental questions of computer ethics. In addition, Weiner published examples of key computer ethics topics. For decades, his work was ignored by the computing fraternity and only much later would much of his findings receive the recognition that they were past due.

Hot on the heels of Weiner was a man by the name of Donn Parker from Menlo Park, California. He was an employee of SRI International which was a leading employer of computing professionals in a growing field of computing technology. He specifically studied the unethical and illegal uses of computers by computer professionals. Parker made a multitude of recommendations while publishing “Rules of ethics in Information Processing”. His recommendations were adopted by the ACM in 1973 (Stanford). He aggressively wrote books, gave speeches and did workshops that highlighted the needs of a computer ethics division. The momentum and drive that Parker exhibited are the reasons why the field of computer ethics returned with a force of its own. Individuals such as myself have Parker to thank for exposing the realities of a supposed “value-neutral” industry. This is a clear indication that despite the infancy of computing as a science, the ethical problems that it faced were very real. More disturbing is the reality that even at that early a stage, problems relating to ethics was a major concern in and of itself.

The late sixties saw the invention of the ELIZA program. It was the brainchild of a Dr. Joseph Weizenbaum who was a computer scientist at MIT in Boston. Weizenbaum spent a lot of his time analyzing logic in programming and discussed the power of an anticipated response. ELIZA was created and scripted to replicate a “Rogerian psychotherapist engaged in an interview with a patient”. The results were astounding; this simple computer program sold some practicing psychiatrists on the idea of computerized therapy. Other computer scholars at MIT were beginning to share their intimate details with the program much like they would in therapy and this once again raised even more eyebrows. Weizenbaum was determined to reinforce a growing tendency among scientists that humans were highly specialized machines. Weizenbaum’s program, book and courses all sought to inspire new thinkers. An offshoot of his efforts was the ethical school of thought that sought to answer the unspoken ethics issues. Around the same time in the 1970’s, Walter Maner, a university professor of Old Dominion, Virginia stepped into the limelight. He began referring to “computer ethics” as technology driven issues propagated by the use of computing technology. He began to offer courses on computer ethics. Maner single-handedly generated a host of interest in the field when he released his “Starter Kit in Computer Ethics”. Computer Ethics had finally seen the blessing of the collegiate system and was now been taken even more seriously than ever before. The arrival of ELIZA and then the work of Maner can be attributed to the huge spurt of interest toward computer ethics in the 1980’s. Ethics conscious individuals and the general public had chosen to not be as passive as in the past.

The 1990’s opened the doors to computer ethics with new university courses, research centers, conferences, journals, articles and textbooks (Stanford). The great thinkers of the time like Donald Gotterbarn, Keith Miller, Simon Rogerson and Dianne Martin were instrumental in the propagation of computer ethics ideals and teaching. Together with the ACM, they were able to spearhead projects relevant to computing and professional responsibility. A series of conferences led by Simon Rogerson were known as ETHICOMP which took place primarily in Europe. In other parts of the world, similar such conferences appeared in Australia and eventually spread to America as well. Rogerson’s work in conjunction with De Montfort University (UK) was heralded as the beginning of a second generation of Computer Ethics (Rogerson, Spring 1996, 2).

There exists the even bigger question of accountability in the software engineering field. Everyday, more and more processes are optimized by introducing computerized process handling. The mass automation of everyday activities ensures that there will be a greater demand for programming control measures. It is almost inevitable that newer means of control and monitoring will have to be in place as we continue to embrace innovative, more “efficient” means of functionality. As programming grows in importance, the size of programming projects swells up in a similar fashion. Microwaves and digital clocks are examples of embedded technologies that make use of pre-determined functions. The relative simplicity of household appliances allows for reasonable testing and understanding of their computerized complexity. The newest additions to this field include sophisticated voice activated systems and time conscious devices that function depending on their sleep cycle. The newest in home security systems can make predictive decisions given a set of events. The question being raised is, can there be an individual who is responsible when a unit fails or makes an incorrect decision?

The software industry today has carved a unique niche for itself. Given the sheer scale of product issues that software development has, it is surprising that even today, the industry is still thriving. Every year, millions of software applications are written and sold on the shelves to sometimes gullible clientele. I refer to customers as being gullible because of the nature of their purchase. Most computing applications are bug prone to say the least. Microsoft’s line of operating systems and Office suite are fraught with coding issues from their very release date. If one were to assess how this situation would pan out in the auto industry, it resembles buying a car with major faults that have been covered up by the company. Picture a car that had not undergone all the necessary crash test safety checks and was still cleared for a rollout. Once the car is released, the company realizes that there is something seriously wrong with the unit and it needs some major replacement parts; the media and public outcry is understandably deafening. Computing applications are a different story altogether; they are usually shipped with an immediate option to “update” the software. This update is equivalent to a wholesale bug fix which ensures that the package’s functionality is kept sound. In the past, software testing and disaster prevention have been areas that have needed the most attention.

In 1998, Bill Gates gained unwanted media attention as his public rollout of Windows 98 failed miserably while it displayed the infamous “blue screen of death” and froze upon booting up (methodshop.com/microsoftblue, Miller). More recently the unlucky Gates had yet another mishap at the Consumer Electronics Show in Las Vegas, during a demonstration of Microsoft Media Center [Vnunet, Thomson]. Needless to say, some unnamed manager in charge of software quality assurance was probably fired a few minutes later. Going back to my initial analogy, imagine if the head of Daimler Chrysler was going to test drive a new Mercedes that refused to start. It would seem that the computing public is a very forgiving one at that. Despite all the frailties of the Microsoft line, the company manages to surpass sales projections every year. There exists an inherent acceptance of the fallibility of software design. It seems as though customers expect buggy programming and tolerate it to a much greater degree than they would any other product. The situation in the software industry is such that companies have set down release dates by which time a working application must be ready. There is no emphasis that the software should be tested thoroughly; rather it must compile and run. In actuality, a significant amount of the testing and debugging may actually occur after the software is released. The unethical nature of these practices is irksome to say the least. As a programmer myself, I find that the accepting nature of the public is a detriment to the software process.

In the same vein, companies such as Computer Associates are famous for their software delivery times. I have learned through several sources that the company practices regarding software design are questionable at best. When programs are tested, they may not run or they may run with warnings; a warning is a red flag that ought to bring the programmer’s attention to the potential for a problem with the program running under certain conditions. Computer Associates employees have admitted that it is common industry practice to ignore testing warnings if the project had close deadlines (networkworld, Messmer). This means that across the industry, one of the most important fundamentals of design is being ignored because of its relative low importance. While it is logical to believe that every test case cannot be checked for, ignoring warnings as identified by a program compiler seems almost suicidal. There seems to be a greater emphasis to ensure that program presentation is crisp while compensating the backend code. Simply, we are swamped by companies that have realized customers will complain but will not take legal action. If the advertised functionality of a program is buggy or non-existent, why is it that such companies are allowed to release more copies of their software. Once again, if a car was touted to have side impact bars but it turns out that the bars are made of an inferior material, such false advertising would certainly give the company bad press. The software industry seems immune to the need for quality control. Like a self-defeating prophesy, customers keep buying faulty applications and “updating” their new software while companies concentrate more and more on maximizing the numbers of their software titles. What makes the software companies today so untouchable that their error-prone offerings are dutifully lapped up by supposedly educated clients? Computing professionals agree that there exist so many holes in even the smallest application that it is frightening to imagine what kind of problems a large scale project may harbor. This problem has grown over the years and poses an even bigger question: where is software development heading if substandard applications are the standard?
Famous Software Engineering Catastrophes

The ethical debate that I bring to your attention has already had far reaching ramifications. Rather than persist by rehashing the gaping holes that ethical uncertainties bring about, it is more appropriate to introduce examples from our recent past where unethical and callous decisions have resulted even in the loss of life. Every industry from the medical field to telecommunications and travel has been affected and in many cases, the repercussions have been unforgiving. Each of these excerpts have been carefully selected for their content and specifically because of their highlighted ethical shortcomings. Rather than bombard the reader with a slew of software glitches of which there are numerous, I have chosen to highlight the more outrageous and damaging ones. The discussion so far has been centered on the need for ethical programming practices. One may wonder how serious a problem is being debated. The recent past has provided ample proof of a bigger problem within software development. There are far too many cases that have involved a variety of human triggered software mistakes. I will detail a few key examples so as to give you an idea of how serious and spread out this problem is.

February 25, 1991 will be remembered for a variety of reasons. Not least the fact that during the Gulf War, an American Patriot Missile battery in Dharan, Saudi Arabia, failed to track and intercept an incoming Iraqi scud missile. Consequently, the scud landed on American Army barracks and killed twenty eight soldiers, injuring a further 100 (Arnold). The missile battery unit had been set up in Dharan specifically to repel just such an attack. Imagine the horror and resulting shock after the soldiers were given a last minute warning of an imminent attack. The US General Accounting Office (GAO) submitted a report entitled “Patriot Missile Defense: Software Problem Led to System Failure at Dharan, Saudi Arabia”. The report cited an inaccurate calculation as the reason for the catastrophe. The numerical value 1/10 which is a non terminating binary number was truncated at 24 bits which was the register maximum. The small chopping error when multiplied by a large time slice brought about a significant time value. The battery itself had been up for about 100 hours and the resulting time error magnified the chopping error to about 0.34 seconds. The Scud missile which travels at about 1,676 meters per second beat the Patriot ”range gate” calculations (Arnold).

In this particular case, what is even more ironic is the fact that some parts of the code had been streamlined to deal with the truncation while other parts had not. The inadequacies created by having some sections in sync while other sections were left vulnerable, allowed the time slice error to manifest itself. At each stage where it was dealt with appropriately, the next stage reintroduced the error and it would carry through the Missile Defense System (Arnold). The ominous nature of this event ensured that not only did the US GAO have to cover up their mistake but several Missile Batteries across the Gulf War had to be reconfigured practically overnight. The fear of getting hit again by just such an attack was far too big a risk.

A section of the GAO report read “…performing the conversion after the Patriot has been running continuously for extended periods causes the range gate to shift away from the center of the target, making it less likely that the target, in this case a Scud, will be successfully intercepted” (Arnold). The report clearly states certain key facts that are astounding. The longer the Unit was kept on, the lower its ability to snuff out an attack. The Battery Unit will suffer time slice issues every time that it is activated; this unit was set up for failure. There were clear programming inconsistencies within the development cycle as clearly described by the coding differences within different modules. Certain programmers had taken the liberty to adjust the Unit for time slice truncations and place the Unit in good standing. Despite this, these same programmers had not passed on this information, or worse still, had chosen not to. The result was that scattered contingencies had been made in order to ensure that the Patriot Missile Battery Unit was accurately programmed. Given the complex mathematical formulae needed to ascertain the trajectory of a Scud, it would seem almost empirical to ensure that the data being received was in good order. Truncation errors are frighteningly common and when they occur at the military level as well, it makes for a very good argument for improved quality assurance standards in coding. When the price of coding mistakes is lives then it is clear that finger pointing and rationalizing the problem away are no real solution to a very genuine problem.

The Altona railway software glitch was the result of a March 12, 1995 disaster. Altona station was one of Germany’s largest stations. The station was the hub for about 30,000 travelers and more than 100,000 passengers using local rapid S-Bahn service. Siemens in conjunction with German Railway decided to completely change the topology of the rail system. The old system consisted of 7 major switch-stands which were monitored by a team of 50 experienced switchmen. The new system was to have 18 switch-stands and would be controlled by an INTEL-486 based real-time system. The new architecture was incompatible with the old one and could not therefore be grandfathered in. The advantage was that the new system would need 40 switchmen less than its predecessor.

Every system’s rollout nightmare came to fruition on that fateful day. Immediately after the system was started, it failed. Siemens experts were completely stumped as to why this was the case. They were unable to locate the cause of the failure for hours. German Railway decided to close the entire railway station. Two days later and after innumerable commuters were left stranded, experts detected that under certain conditions, a stack overflow occurred. When an analysis of the stack overflow routine was made, it was discovered that it fell into a dead-loop (a loop that never terminates and basically is an instance of deadlock) due to a programming error. The error was not due to free space of which there was plenty. Instead, the problem was a result of the need for 4,000 bytes of RAM instead of the foreseen 3,500 (Catless: Risks). The next morning, the bug was finally fixed and rail traffic began to return to Altona station. The system was still new and therefore the switchmen only allowed restricted traffic for the better part of the week.

In a press interview, the Siemens manager who was responsible for the debacle argued that the problem was “hidden” and that Siemens experts had assumed that the routine handling stack overflows would never be used. In addition, the automated system is overseen by switchmen who do not understand how to deal with a computer complication. These men will not be able to take over the system in case of an emergency. There was no manual mode set up on this system and the only option other than the automated one is to shut it down completely. The oddity in this particular case was the fact that stack overflow routines were set up specifically for exception handling. One of the very basics of computer programming is the notion of error handling and the fact that Siemens engineers never felt that it would ever be used is a grave mistake. Clearly, embracing newer untested technology is considered far more important as it is more “rational” even though it may really be the equivalent of taking two steps backwards. In all fairness, new technology comes with its advantages yet the security risks and technological hang ups may not be worth it in the long run. Without a better understanding of the fallibility of the programming process, engineers and coders alike will be confused as to how much responsibility a new technology can be entrusted with.

 The Ariane 5 was an unmanned rocket launched by the European Space Agency that exploded just forty seconds after its liftoff on June 4th 1996 (umn.edu/ariane). The rocket, on its maiden voyage, cost $7 billion in development. In addition, the rocket and its cargo were valued at $500 million. The cause of failure was a software error in the inertial reference system. To be more specific, a 64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16 bit signed integer. The number turned out to be larger than 32,767 which is the largest integer storable in a 16-bit signed integer; subsequently, the conversion failed. The company in charge of the project was the France based Système de Référence Inertelle (SRI). The company designed the Initial Reference System (SRI) as a means to control flight paths and possible exceptions. This expensive project was toast in a matter of seconds simply because of an oversight that was the result of pure and clear negligence. The inability to ensure that comprehensive testing methods had been used, proved to be the largest stumbling block in this debacle. In a similar incident, a MARS climate orbiter failed to land on Mars and was finally declared “lost” on November 10th 1999. Among the most eye catching factors on the NASA board’s report were the following. Firstly, the systems engineering function within the project that was supposed to track and double-check all interconnected aspects was declared not robust enough. Since NASA and Lockheed Martin (co-designer) were both confident in the orbiter’s ability, the failed robustness report raises even more quality concerns. The situation was exacerbated when the project switched hands from a group that had created it and launched it to a new, multi-mission operations team. The dearth of communication between these two disjoint groups was a strong catalyst in the final fiasco. Finally, the process to verify and validate certain engineering requirements had been inadequate. Ensuring that these requirements and the technical interfaces between project groups and their prime mission contractor were sound was the key goal of the Mars orbiter project. The failure board detailed a list of no less than nine possible reasons for the failure, of which five were blatantly programming-related anomalies.

 Frank Houston of the US Food and Drug Administration (FDA) once said, ”A significant amount of software for life-critical systems comes from small firms, especially in the medical service industry; firms that fit the profile of those resistant to or uninformed of the principles of either system safety or software engineering” (Leveson, Turner, IEEE Computer, Volume 26, No. 7). This quote was made in direct reference to the now infamous Therac-25 disaster. As computers became more and more acceptable in the medical sciences, their entry into the safety-critical end of medical equipment was inevitable. The incident itself took place between June 1985 and January 1987. Nancy Leveson of the University of Washington was quoted saying that “many companies building safety-critical software are not using proper procedures from a software engineering and safety-engineering perspective” (Leveson, Therac, 3). The results should have been expected given that software quality and dependability are at an all-time low. One would think that given the nature of industry involved that there would be some measures in place ensuring that software is not simply being lapped up by the medical community. The frightening reality of the Therac-25 tragedy was that it continued for so long before finally being detected. The results were irreversible and in most cases, resulted in death for the patients. The massive overdoses of radiation by the Therac-25 software coupled with the relatively new use of medical accelerators simply perpetuated the horrors of this mess. Atomic Energy Commission Limited (AECL) and a French company CGR collaborated to build linear accelerators. Therac-6 and Therac-20 were two of their earlier efforts that used a 6 million electron volt accelerator and a 20 million electron volt accelerator respectively. The sequential upgrades had worked out well as the Therac-20 could administer both electron and X-Ray accelerations. The Therac-25 was an expected upgrade and when it arrived, several glaring differences were noticeable. AECL had designed Therac-25 without the help of CGR and now took advantage of computer control from the outset. AECL did not build a standalone machine. The worrying aspect here was that both the Therac-6 and Therac-20 had been designed around machines that already had histories of clinical use without computer control.

In a new twist, The Therac-25 software had more responsibility for maintaining safety than the software in previous versions. The Therac-20 had independent protective circuits for monitoring electron-beam scanning and mechanical interlocks for policing the machine and ensuring safe operation. There was a growing faith (misplaced perhaps?) that the added expense of hardware backups were not worth the extra expense. The shift from hardware to software reliability had finally been made. Despite the differences in hardware dependencies, software from each of the preceding versions of Therac had been used for the Therac-25. The quality assurance manager was unaware that some Therac-20 routines had been used and these modules partly explain some of the abnormalities of the Therac-25 system. As it turned out, the Therac-20 routines that were faulty had never been fatal thanks to the hardware interlocks ensuring that the system was injury safe. The Therac-25 software was another story altogether. Typical single therapeutic doses are in the 200 radiation absorbed dose (rad). Most fatalities and injuries caused by the Therac-25 were rated at between 17,000 and 20,000 rad. Doses of 1,000 rads can be fatal if delivered to the whole body (Leveson, Therac, 5). The effect of the Therac-25 radiation dose was an X-Ray burn that proved fatal on more than a few occasions. An in-house safety analysis was conducted by AECL in 1983. It failed to explain a problem in the OR gate where a wrong energy box reading was possible and the probability of 1011 was assigned to it. Another error resulting in the “computer selecting the wrong mode” had a probability of 4*109. The safety report released by AECL provided no comment on these two glaring glitches. The subsequent FDA cover ups which included advisories against using the Therac-25 system but never mentioned patient death were some of the low points in a tragic story. To date, full details of the Therac-25 investigations have been kept under wrap for fear of legal implications. The companies and governments involved have remained tight-lipped over the entire span of the ignominy that followed Therac-25. I strongly feel that understanding the full implications of AECL’s mistakes will garner a better perception of the realities in the computing industry. The notion of a value-neutral field seems laughable when mentioned in the same breath as the Therac-25 disaster. If future generations are to be protected against newer threats, then the unconditional enforcement of coding and quality standards must be in place henceforth. As long as ambiguity exists, it will benefit nobody in the long run, not even companies in development looking for a quick buck.
Conclusion

This thesis has explored the newer concept of programming ethics within the field of computing science. Research on this topic yielded a fair share of internet resources while exposing the scarcity of relevant books on the subject. The idea that programming ethics are in their formative stages alludes to the reality that there are few if any barometers to gauge the real impact of ethical decisions. Within the computer science discipline, the unrelenting growth of technology has somewhat undermined the need to monitor the results of expansion. With the gradual acceptance of the ACM and IEEE standards, there is a growing interest in certification that has an emphasis on the design process. To this end, there has been a lot of debate regarding programmer certification. With more and more programmers contributing to design aspects, it becomes invariably necessary to tighten the control measures in place so as to protect the interests of the industry and its consumers.

One of the prime constants throughout this thesis has been a re-establishment of the company bottom-line. While it is widely understood that IT companies are run like businesses and are expected to function in this way, the greater issue of professional responsibility is the burning topic that needs to be addressed. With a field as vast as IT, computer professionals and companies are liable to feel disenfranchised. The reality today is that there is a need to curtail the spiraling violations that dot the IT landscape. The flagrant disregard of ethical considerations by numerous companies must become a punishable offense if any headway is to be made in reversing the trend towards unscrupulous practices. The new bottom-line must be a marriage of cost and quality. Like many industries before it, IT must face the realities of a mushrooming market that is very capable of imploding.

The issue of beta testing has been analyzed from within the company and also by including outside testers as a means to improving the development cycle. Beta testing was traditionally a very private practice that has slowly crept into the realm of web propagation; more and more betas are available freely online unlike in the past. For companies, the advertising gains and free reporting methods are a timely economic factor given the flagging fortunes of today’s technology companies. In addition to this, funding towards general application testing has nose-dived in recent years. Some companies such as AT&T are making strides in the field by introducing an incentives-based certification system (Weyuker, 80). Realistically, companies that operate traditionally with a trained or certified staff produce better results, period. With cost-cutting methods forming the core of the business ideology, most companies are caught between doing what is ethical and doing the very least possible in that area. The latter provides a fair estimate as to which direction most companies lean towards given the reduced spending that testing and debugging has received over the last few years. Indeed it often becomes a liability to do the right thing; in some cases, software would never even get published under more stringent regulations.

The greater problem of control is the harder question to answer. In many instances, it is easier to criticize a system than to provide tangible solutions. Since there are no real unifying bodies within IT, the challenge would be to identify a means of control: a central body that acts in the best interests of all involved but is not biased in any way. As a reader, you may be thinking that this utopian ideal is nothing short of ludicrous. To this end, I choose to reiterate the importance of control once more. With an empowered central body such as an international organization or perhaps even a government wing, a controlled and stable environment for software creation can realistically be the first fruit of such an initiative. Certain recent initiatives have detailed recommendations to the order of government control of the cyber-security network (Lemos, 2). It is a widely accepted notion that control of the development process is pivotal to advancement of the discipline. In addition, all the companies that resort to chicanery in their dealings can be prosecuted accordingly. The reasons for this lie in the laws of the land which do not adequately account for the technological advances that have been made over the last half of the century. Many software companies are wrapped in lawsuits that eventually fizzle out due to the lack of adequate judicial action. Since the laws concerning software development are not specific to the field, ambiguity and lack of specificity become the biggest stumbling blocks for legal recourse. The open extortion of companies and individuals that lap up new, faulty software can finally cease to be an accepted norm.

The programming process has also been redefined with a view to expose its inherent flaws. Programmers that resort to “creative” (unethical or unauthorized) coding practices undermine the already wafer-thin credibility of many development houses. In addition to bad programming practices, the growing number of programmers has made it impossible to really gauge potential and skill levels. Add to this the bulging compensation packages and high turnover and you have the recipe for an ethical Heimlich. Essentially, past programming control methods have fallen prey to the realities of a work environment. Most employees are not going to go the extra mile unless they are either forced or enticed to. From a programming perspective, there are no winners in this scenario. The solution here is to rethink the finer details of the programming process so as to ascertain what works and then realize what practices need to be shelved.

I recommend the creation of a separate programming ethics code of conduct that can be endorsed by the ACM and/or IEEE. The need for a separate programming code of ethics is based on the lack of specificity with the current code of ethics. In addition to this, there is a greater need to address the programming aspect of computing which the ACM/IEEE code of ethics fails to cater to. The ambiguity that is apparent in clauses eight and six leave much to be desired in the realm of setting ethical standards. This new code of ethics will be tailor made to address the issues outlined within this thesis. I envisage a flurry of interest in this field as more people become aware of the inconspicuous ethical dilemmas that programming harbors. I can see a final end to the chicanery of firms that use extortion as a means to selfish ends. The solutions to the big problems in coding are related to structure and control. Once there are ramifications for improper coding practices, a streamlined solution will follow. This new programming ethics code will attempt to solve issues pertaining to programming choices, decision making models and the sense of professional responsibility.

Ideally, the suggestions promoted in this essay will kick-start a deeper understanding of the ethical issues that are being ignored every day. As a developer and ardent fan of this unique programmer’s clique, I want to see coding taken to the next level. All individuals who are involved in the software cycle, from the managers to the programmers, are responsible for doing their part in ensuring that ethical concerns are met. Managers are hard-pressed to meet deadlines and often times, put undue pressure on their coding staff to perform. Likewise, programmers are sometimes accused of being lazy or choosing to take shortcuts instead of coding with scruples. The buck must stop here; responsibility for the creation of an ethical balance is the role of all players in the software cycle. Given the immense progress that has been made towards cementing computer ethical concerns, it seems only fair that one of the very staples of the field, coding, receives the same honor. An ethical world is a utopian ideal until there are key systems in place ensuring that the world of software engineering does not look away during disasters and rather, takes responsibility for its shortcomings. Technology is here to stay and ethics are ours to uphold. We must all do our part.
Works Cited

"Computer Ethics: Basic Concepts and Historical Overview." <http://plato.stanford.edu/entries/ethics-computer/>: Stanford University, August 14th 2001.

"The Explosion of the Ariane 5." <http://www.ima.umn.edu/~arnold/disasters/ariane.html>,August 23, 2000.

"InspectionGadgets." <http://www.intellij.org/twiki/bin/view/Main/InspectionGadgets>: IntelliJ Community.

"Software Horror Stories." <http://www.cs.tau.ac.il/~nachumd/verify/horror.html>:.

Daniel Salber. "The Need for an Applied Computer Ethics Handbook." <http://www.compendiumdev.co.uk/books/computerethics.pdf>: CLIPS-IMAG, University of Grenoble.

Don Gotterbarn. "Non-Programming Ethics Activities." <http://www.cs.utexas.edu/users/ethics/computer_ethics/more_activities.html>
Douglas Isbell, Don Savage. "Mars Climate Orbiter Failure Board Releases Report, Numerous NASA Actions Underway in Response." <http://www.iki,rssi.ru/jplmirror/mars/msp98/news/mco991110.html>,November 10, 1999.

Douglas N. Arnold. "The Patriot Missile FAilure." <http://www.ima.umn.edu/~arnold/disaster/patriot.html>,August 23, 2000.

Elaine J. Weyuker, Thomas J. Ostrand, JoAnne Brophy and Rathna Prasad. "Clearing a Career Path for Software Testers." <http://www.cs.uccs.edu/~chamillard/cs536/Papers/Weyuker00.pdf>: IEEE Software.

Ellen Messmer. "Computer Associates Sketches Security Architecture Plans." English. <http://www.networkworld.com/news/2005/0301casec.html>: Networkworld, 03/01/05.

Iain Thomson. "Blue Screen of Death Crashes Gates at CES." <http://www.vnunet.com/news/1160317>: Consumer Eletronics Show, 06 Jan 2005.

James H. Moor. "What Is Computer Ethics." <http://www.southernct.edu/organizations/rccs/resources/teaching/teaching_mono/moor/>:.

Jeremy Malcolm. "Problems in Open Source Licensing." <http://www.ilaw.com.au/public/licencearticle.html>: Ilaw.

Nancy Leveson, Clark S.Turner. "An Investigation of the Therac-25 Accidents." <http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html>: IEEE Computer, Vol. 26, No. 7, July 1993.

Olivier L F. "ANT and JUNIT Issues." <http://lists.gnu.org/archive/html/classpathx-discuss/20001-12/msg00028.html>,4th December 2001.

Peter G. Neumann. "The Risks Digest." <http://catless.ncl.ac.uk/Risks/16.93.html>,20th March 1995.

Robert Lemos. "Programmers Should Prize Security Over Creativity - Report." <http://www.cnetnews.com/software/developer>: CNET News.com, April 02' 2004.

Ryan Miller. "Microsoft's Blue Screen of Death." <http://www.methodshop.com/tech/articles/microsoftBlue/index.shtml>: methodshop.com, 02/18/2005.

T.E.Hunter. "Cooperative Coding in Wireless Communication." English. <http://www.utdallas.edu/~aria/mcl/coop/>: University of Texas at Dallas, January 2003.

Thomas Huckle. "Collection of Software Bugs." <http://www5.in.tum.de/~huckle/bugse.html>: Institut fur Informatik, March 12 2004.

Tyson Gill. "Software Issues 3: The Ethics of Programming." <http://www.informit.com/articles/printerfriendly.asp?p=21268>: InformIT, May 4, 2001.

PAGE
61

