Summary of Convergence and Divergence Tests for Series

Test	Series	Convergence or Divergence	Comments
<i>nth</i> -term	$\sum a_n$	Diverges if $\lim_{n \to \infty} a_n \neq 0$	Inconclusive if $\lim_{n \to \infty} a_n = 0$
Geometric		(i) Converges with sum $S = \frac{a}{1-r}$ if $ r < 1$	Useful for comparison tests if the
Series	$\sum_{n=1}^{\infty} ar^{n-1}$	(ii) Diverges if $ r \ge 1$	n^{th} term a_n of a series is similar to ar^{n-1}
		(i) Converges if $p > 1$	Useful for comparison tests if the
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	(ii) Diverges if $p \leq 1$	n^{th} term a_n of a series is similar
	<i>n</i> -1		to $\frac{1}{n^p}$
Integral	$\sum_{n=1}^{\infty} a_n$	(i) Converges if $\int_1^\infty f(x) dx$ converges	The function f obtained from
	$a_n = f(n)$	(ii) Diverges if $\int_1^\infty f(x)dx$ diverges	$a_n = f(n)$ must be continuous, positive, decreasing, integrable.
Comparison	$\sum_{n=1}^{n} a_n,$ $\sum_{n=1}^{n} b_n$ $a_n > 0, b_n > 0$	(i) if $\sum b_n$ converges and $a_n \leq b_n$ for every n , then $\sum a_n$ converges. (ii) If $\sum b_n$ diverges and $a_n \geq b_n$ for every n , then $\sum a_n$ diverges. (iii) If $\lim_{n\to\infty} (a_n/b_n) = c$ for some positive real number c , then both series converge or both diverge	The comparison series $\sum b_n$ is often a geometric series or a <i>p</i> -series. To find b_n in (iii) consider only the terms of a_n that have the greatest effect on the magnitude.
Ratio	$\sum a_n$	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L$, the series (i) converges (absolutely) if $L < 1$ (ii) diverges is $L > 1(or \infty)$	Inconclusive if $L = 1$. Useful of a_n involves factorials or n^{th} powers. If $a_n > 0$ for every n , disregard the absolute value.
Root	$\sum a_n$	If $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$, $(or \infty)$, the series (i)converges (absolutely) if $L < 1$ (ii) diverges is $L > 1(or \infty)$	Inconclusive if $L = 1$ Useful if a_n involves n^{th} powers If $a_n > 0$ for every n , disregard the absolute value.
Alternating Series	$\sum_{a_n > 0}^{(-1)^n a_n} a_n > 0$	Converges if $a_k \ge a_{k+1}$ for every k and $\lim_{n \to \infty} a_n = 0$	Applicable only to an alternating series.
$\sum a_n $	$\sum a_n$	If $\sum a_n $ converges, then $\sum a_n$ converges.	Useful for series that contain both positive and negative terms.