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Abstract

One of the common invariants of a graded module over a graded commutative ring is the
Betti number. For any graded minimal free resolution F'. of a graded R-module, we have
corresponding Betti numbers that record information about the grading of F.. Using a
specific index, we can construct a Betti diagram with Betti numbers as entries. Inspired by
a set of conjectures of M. Boij and J. Soderberg, an algorithm was given by D. Eisenbud
and F. Schreyer allowing the decomposition of Betti diagrams into pure diagrams. In this
thesis, we explore the basic concepts of Boij-Séderberg theory, including the construction of
minimal free resolutions of graded R-modules, Betti diagrams, and Betti decomposition.
We investigate the relationship between the Betti decompositions of graded R-modules
that form a short exact sequence and find that there is a class of short exact sequences of
modules such that the Betti decomposition of the middle module is equivalent to the sum
of the Betti decompositions of the outer two modules. We also examine the decompositions
of Betti diagrams over a special kind of ring called a complete intersection, which furthers
the results of C. Gibbons, J. Jeffries, S. Mayes, C. Raicu, B. Stone, B. White (2012) [6]
to codimension 4.
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Introduction.

1.1 History and background

In 2008, M. Boij and J. Soderberg published an article [2] describing two conjectures
relating to the Betti diagram representations of graded free resolutions of Noetherian
modules. One of these conjectures, restated in this paper with Theorem 1.4.4, views Betti
diagrams as sitting inside some vector space, and as a result they can be written as linear
combinations of basis elements. In 2009, D. Eisenbud and F. Schreyer proved Theorem
1.4.4 using an algorithm that “decomposes” Betti diagrams into linear combinations of
basis elements. This algorithm is one of the main tools we employ in order to study the
Betti diagrams of Noetherian modules.

The study of Noetherian modules would not be possible without the groundbreaking
research of the German mathematician Emmy Noether in the 1920s. One of Noether’s
most important contributions to abstract algebra was her clever use of ascending (or
descending) chain conditions. Any object in abstract algebra satisfying these conditions is
now referred to as “Noetherian” in her honor. A module M is Noetherian if it satisfies the

ascending chain conditions on its submodules, or, equivalently, if every submodule of M
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is finitely generated. The following remark comes from the theory of Noetherian modules.

It is well known that this is the case.

Remark 1.1.1. ' If M is a finitely generated module over R = k[z1, ..., x,], then every

submodule N C M is finitely generated. %

We will use this property of finitely generated modules when constructing the graded

minimal free resolution of a graded R module in Section 1.3.

1.2 Motivation and basic definitions.

The two main questions that we will explore in this paper are as follows.

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

0 A B c 0.

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

Question 1.2.2. Let S = k[z1,...,x4] be a polynomial ring over a field k and let I =
(f1,.-., fa) be an ideal of S generated by a homogeneous reqular sequence with deg(f;) = e;.

What is the Betti decomposition of S/I in terms of the degrees e; ?

To fully understand these questions, we need some background material. We will discuss
rings, ideals, modules, short exact sequences, and standard grading in Section 1.2. In
Section 1.3, we will introduce generating sets and free modules, which will lead to the
construction of minimal graded free resolutions. In Section 1.4, we will explore Betti
diagrams, each of which is unique to a given minimal graded free resolution. We will
revisit Question 1.2.1 in Chapter 2 and Question 1.2.2 in Chapter 3 once we have all the

necessary tools.

1See any introduction to commutative algebra text, such as [1], [4], [11], [12]
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Definition 1.2.3. A ring is a set R with binary operators (+, -) such that R is an abelian

group under addition and has the following properties:

1. z-y € R,

2. (zy)z=a-(y 2),

ox-(y+z2)=z-y+x-z,

for all z,y,2z € R. A ring R is commutative if x -y =y - x for all z,y € R. A ring R has a

multiplicative identity 1p € Rif lp-x =2 -1z = x for all x € R. A

In this paper, we will assume all rings are commutative and include a multiplicative

identity.

Example 1.2.4. The sets Z,R,Q, and C are all commutative rings with multiplicative

identity. O

Example 1.2.5. Let k be a field. Define R = k[z] as the set of polynomials of the form
Zcixi such that ¢; € k. We have that 3 — z, 723, 22 4+ z? € R. Since k is a field, then
‘éﬁg sum of any two polynomials in R will still be in one variable with coefficients in k.
Observe that (22 +2%)+ (3 —2) =3 +z+2* € Rand (3—z) + (72%) =3 -2+ 72 € R.
Using this technique, it is easy to show that R is closed. Thus R is closed under addition.
Note that each element r(z) € R has an additive inverse, given by —r(z). Since addition

of polynomials is commutative, it follows that R is an abelian group under addition. We

will go through the three properties of a ring from Definition 1.2.3 to show that R is a



1. INTRODUCTION.

ring. Let r(z), s(x),t(z) € R. Then we can write

n .
r(z) = Z r;x’,

i=0

m

s(z) = Z s,

J=0

l
t(z) = Z tpxk,
k=0

for r;, 55,1 € k. Then we have that

r(x) - s(x) ( ri:zi) Z sjx
i=0 =0

n

m
risjat .
i=0 j=0

Since 13,5; € k and k is a field, then r;s; € k for all 0 < i < n,0 < j < m. By our

definition of R, it follows that r(z)-s(x) € R. Consider 3 —x, 7z € k[z]. Multiplying these

two polynomials together, we get (3 — x)(72%) = 2123 — 72%. Since 21,7 € k, it follows

that 2123 — 72* € k[x).

We also have that

(r(z) - s(x)) - t(z) =

[l Il
< NE
= I
3
V2]
<
M=z
3 g
- ¢
<
+
V) o
.
~
Bl
8
<
+
Bl
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Consider f(z) =3 —z,g(z) = 723, h(z) = 2z + 2* € k[z]. We find that
(f(z) - g(x)) - h(z) = ((3 — )72°)(2x + 2?)
= (2123 — 72 (22 + 2?)
= 42z* + 72° — 7x6,
and that
f(@) - (g(x) - h(z)) = (3 — 2) (72 (22 + 27))
= (3 — 2)(14a* + 725)

= 422* + T2° — 745,

So (f(x) - g(x)) - h(x) = f(x) - (g9(x) - h(x)).

We define s; = 0 for j > m. For the final property in Definition 1.2.3, we have

n m l
r(@) - (s(z) +1(x)) = <Z ) - ((Z wﬂ') + (Z th’“))
i=0 7=0 k=0

n max (m,l)
= (Z rixi> . ( Z (sj —i—tj):cj)
i=0 j=0

ri(sj + tj)xHj

= (T‘Z'Sj + Titj)iﬂi—i_j
=0 j=0
n m n 1
= Z n.ijiﬂ') + (Z Z Titj$i+j)
i=0 j=0 i=0 j=0
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in k[z]. Notice that
f(@) - (9(z) + h(x)) = (3 — 2)(T2® + 22 + 2?) = 202> + 62 + 2 — 7o
and
f(@)-g(x) + f(z)-h(z) = (3 —2)723 + (3 — 2)(2z + 2?) = 202°® — Tz + 62 + 2°.

It follows that f(x)- (g(x) + h(z)) = f(z) - g(z) + f(z) - h(x).

Observe that

so R is commutative.
Notice that 1-7(z) = r(z)-1 = r(x) for all r(z) € R. Thus we have shown that R = k[z]

is a commutative ring with a multiplicative identity. %

Proposition 1.2.6. Let R be a commutative ring. Then

R[z] := {Z ra |y € R}

1=0

1S a TIng.

Proof. Let R be a ring. Consider the set defined by

=0

R[z] := {Z ra | ri € R} .
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Let r,s,t € R[z]. Then

l
t= Z til‘i,
1=0

for r;, s;,t; € R.. Observe that we can employ the same argument as in Example 1.2.5 to

show that
r-s € R,
(r-s)-t=r-(s-t),
re(s+t)=r-s+r-t,
r-s=s-r,
and1-r=r. O
We define
Rlzq,...,xy,) = Z@gﬂ lveZ®
0;>0
as the set of polynomials over R in n variables, where x = [z1,...,z,],v = [v1,...,v,] are
vectors and z¥ = x]'x5? - - 2",
Proposition 1.2.7. If R is a commutative ring then R[x1,...,xy,] is a commutative ring.

Proof. We will prove this by induction on n. Let n = 1. Then R[z1] is a ring by Propo-

sition 1.2.6. Assume that R[zi,...,x,—1] is a ring for n > 1. We want to show that
R[z1,...,xy,) is a ring. By Proposition 1.2.6, we have that R[x1,...,zp—1][xy] is a ring. It
suffices to show that R[x1,...,zy_1][xn] = Rlx1,...,2y].

¢
Let s € R[x1,...,Zp-1][zyn].- Then s = Z six; for s; € R[x1,...,x,—1]. Note that if r €
=0
R[z1,...,xp—1] then r = Z rpxitay? oz for vy € R and for all v = (vy,...,0,1) €
v; >0
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7" 1 1t follows that

¢
5 = g g roxtws? x| 2k, (1.2.1)

=0 \v;=>0

for r, € R and for all v € Z"'. Notice that the i summand of (1.2.1) is the sum

Z Pyt - tal | for all v € Z'L Or, equivalently, the it summand of (1.2.1) is

n—1*n
v; 20

given by Z Pt ay? -t for all w € Z"! x {i}. Tt follows that
w; >0

Wn,—
5= g rpxytay? o x, e

w; >0
forallw € Z" ' xZ = Z". Therefore s € Rz, ..., x,). It follows that R[z1, ..., 2, 1][z,] C
Rlzy,...,xy).
Now let s € R[x1,...,zy]. Then
= 3 ralia
w; >0

for all w € Z" and for r,, € R. It follows that

=

¢
o .
s = g E ryxtes? x|

7 v; >0
for some t € Z and for all v € Z"!. Therefore s € R[z1,...,2n_1][x,]. Tt follows that
Rlzxy,...,xy) C R[z1,. .., Tp-1][xn]. O
As a direct result of Proposition 1.2.7, we have Corollary 1.2.8.

Corollary 1.2.8. k[xy,...,z,] is a ring.

Recall that a group G can have a special kind of subgroup N called a “normal subgroup”.

Similarly, a ring R can have a special subset I, called an “ideal”.

Definition 1.2.9. Let R be a ring, let I C R be a subset and let r € R. Then I is an

ideal of R if
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1. I is an additive subgroup of R and I is closed under multiplication, and

2. for all a € I, € R, we have that ar,ra € I.

Consider the following example.

Example 1.2.10. Consider the polynomial ring R = k[z, y]. Then I = (x,7?) is a subset
of R, where I = {r € R | r = sz + ty” for all s,t € R}, i.e. I is the set of polynomials

generated by = and y?. So, since z — 3y, 7 + xy € k[z,y], then
(z —3y)z + (7+ zy)y® = 2° — Bay + Ty* + 2y’ € I C k[z,y].
Observe that I is an additive subgroup of R and that I is closed under multiplication. By

definition, I satisfies property (2) from Definition 1.2.9. Thus I is an ideal in R. O

Recall that a group G modulo a normal subgroup N is a quotient group G//N. Similarly,

we have that the set R/I, given by a ring R modulo an ideal I, is a “quotient ring” R/I.

Proposition 1.2.11. Let R be a ring and let I be an ideal of R. Then the additive quotient

group R/I is a ring under the binary operations:
(r+D)+(s+1)=(r+s)+LTand (r+1)-(s+1)=(rs)+1
forallr,s € R.

Proof. To prove that R/I is a ring, we need to show that R/I is an abelian group under
addition and that it satisfies the properties stated in Definition 1.2.3. Since R is a ring
and [ is an ideal of R, it follows by definition that R is an additive abelian group and that
I is an additive subgroup of R. As subgroups of abelian groups are normal, we have that

R/I is an abelian quotient group under addition. Let x + I,y + I,z + I € R/I be cosets,
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denoted 7,7, Z, respectively. We define the multiplication of  and ¥ to be

Ty=@+Dy+I1):=z-y+I1=1y°

Since z,y € R, it follows that z-y € R. Sox-y+1 =7y € R/I. Thus R/I is closed under
multiplication. Using our definition of multiplication of cosets, it follows that (7 -y) -z =
Ty -z=(xy+1)(z+1) =2y -z+ 1=z -yz+ 1 =7 -yz, so we have associativity in R/I.

We also have

Ty+z)=(+0) (y+1)+(z+1))
—(x+D((y+2)+1)
—a(y+z)+1
= (zy+azz)+1

=xy+xz.

Hence R/I is distributive over addition. Thus all of the properties in Definition 1.2.3 are

satisfied, so R/I is a ring. O

We say that R/I is the quotient ring of R by 1.

Example 1.2.12. Let R = k[z,y] be a ring and I = (z,%?) be an ideal in R. Then R
klz, y]
(z,y?)

I C R is made up of ring elements that can each be written as a = s(z, y)z +t(z,y)y* € I

modulo its ideal I is the quotient ring R/I = . Recall from Example 1.2.10 that

for some s(z,y),t(x,y) € R. So, elements of R/I are cosets of the form r + I, denoted T,

for r € R. For example, the cosets 2y = 2y + I,3 —xy = (3 — xy) + I are in R/I. Using

2See p. 242 in [3] for a proof that this operation is well-defined.
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the definitions for addition and multiplication from Proposition 1.2.11, we have that

2u+3—ay=2y+I1+@B—ay)+1

=Q2y+3—zy)+1€R/I,

and

2y-3—zy=Q2y+1B—-zy+1I)
=2y(3—uay)+1
= (6y — 2xy®) + 1

= 6y — 2xy2.

O

Recall that R = k[x,y] is the set of polynomials of the form zn:cix‘”ybi such that
a;,b;,n € Z > 0,c; € k. Observe that for any polynomial r € R, we (Z;?l arrange the terms
of 7 in order of degree. Consider r = 322 + 42y + 3 — 3>. Note that deg(3z?) = deg(4zy) =
2,deg(3) = 0, and deg(—y>) = 3. Let Ry C R be the subset of R such that sy € Ry
if and only if deg(ss) = 2 for all s, € R. Then 322, 4zy, 32> + 4zy € Rs. Similarly, let
Rs = {s3 € R | deg(s3) = 3} and let Ry = {so € R | deg(sp) = 0}. Note that Ry = k. It

follows that 3 € Ry and —y3 € R3. We can relate r to Ry, Rz, and R3 using direct sums.

Definition 1.2.13. Let A, B be sets such that AN B = (). Then we define
A B:=A+B

to be the direct sum of A and B. AN

Observe that every s € Ry & Ry @ Rs can be written as s = sg + sg + s3 for some

sp € Ry, s2 € Ro,s3 € Rs.
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We say F(ri,...,rn) = {c1m1 +cora+...+cpry | ¢ € F} is the vector space is the vector
space over the field F spanned by r1,...,7,. Let I, J be sets. We define the multiplication

of these sets as

IJ:={ij|liel,jeJ} (1.2.2)

Note that deg(sas3) = 5 for some s3 € Rg, s3 € R3 and Ry, R3 are as previously defined.
If we define R5 = {s5 € R | deg(s5) = 5}, then sas3 € Rs. It follows that RyR3 C Rs. By

Definition 1.2.14, we find that R = k[z,y] is standard graded.

Definition 1.2.14. Let R be a ring. R is standard graded if

1. R= @ R;, where each R; is an abelian group over addition and Ry is a field,
i>0

2. RiRj C Riyj,

3. R is “generated in degree 1,” i.e. R = Ry|R1] = Ro[z1,...,x,] such that R} =

R0<IL’1,. . .,l‘n>.

A

We say that R; is the i graded piece of R. Further, if r € R;, we say that r is a
homogeneous element of degree i. Note that each R; is generated by elements of degree i.

Consider the following examples.

Example 1.2.15. Let R = k[z,y| be the polynomial ring in two variables over the field

k. Then property 1.2.14(1) is satisfied because
R=k®kir,y) ® ke, zy, ") & ...

We have that k(z,y) = {a1x+azy | a; € k} and k(z?, 2y, y?) = {b1z°+bozy+bsy® | b; € k}.

It is a consequence of (1.2.2) that

k(z,y)k(z®, zy,y*) = {rs | r € k(z,y), s € k(z*, 2y, y?).
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So, (5z + y)(72* — 3zy) € k{z,y)k(2z?, 2y, y*). But we also have that
(52 4 3)(72? — 3zy) = 352° — 22y — 3z9” € k(a3, 2%y, zy?, ).
From our definitions of k(z,y) and k(z?, zy,y?), it follows that
k(z, o) k(z?, zy, y?) = {(a12 + agy) (b12? + boxy + b3y?) | as, b; € k}.
Equivalently, we have
k(z, y)k(z?, 2y, y?) = {a1b12> + (a1by + azby)x?y + (a1bs + agbe)xy® + azbsy® | a;, b € k}.
Since k is a field, we have that a1b1, a1b2 + asby, a1bs + agsbs, asbs € k. So we can write
k(z, y)k(x? zy, y?) C {c12® + oy + c3xy® + e | i € kY,
which is, by definition, equivalent to k(x> 2%y, zy?, y*). Thus
k(x, y)k(z®, 2y, v°) C k(z, y)k(2?, 2y, ).

Using a similar argument for any two graded pieces of R, we find that R;R; is contained
in the abelian group with elements of degree i + j, so property 1.2.14(2) is satisfied.
Since Ry = k, it follows that R = Rolx,y]. So the final property 1.2.14(3) is also

satisfied. O

One of the most important algebraic structures is the module. Modules are similar to
vector spaces from linear algebra, but modules can be over any ring, not just a field. As

we mention in Example 1.2.17, any module over a field k is a vector space over k.

Definition 1.2.16. Let R be a ring. An R-module is a set M together with
1. a binary operation + on M under which M is an abelian group, and

2. an action of R on M: R x M — M, denoted rm for all r € R, m € M. This action

satisfies
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(a) (r+s)ym=rm+smforall r,s € R,m € M,
(b) (rs)m =r(sm) for all r,s € R,m € M,
(c) r(m+n)=rm+rnre R,m,ne M, and

(d) 1m =m for all m € M, if R has a 1.

A

Example 1.2.17. Let F be a field and let M be an F-module. We observe that M satisfies

all of the properties of a vector space of F. Then M is a vector space over F.

Example 1.2.18. All abelian groups are Z-modules. Let R = Z and let G be any abelian
group under some binary operation, +. Then we can define an action of R = Z on G that
satisfies the statements in the previous definition. For any n € Z and g € G, we define
this action as follows:

g+g+---+ g (n times) ifn>0

ng=1+{ 0 ifn=0 .
—g—g—---—g (—ntimes) ifn<0

This action of Z on GG makes GG into a Z-module. O

Example 1.2.19. Let R = F be a field. Let M = F[x] be the polynomial ring with one
variable over F'. Then M is an abelian group under addition. Observe that this is a vector

space by Example 1.2.17, so the above properties are satisfied. So M is an R-module. ¢
Now, consider a more complicated example.

Example 1.2.20. Let k be a field and let R = k[z,y| be the polynomial ring with two
klz, y]

@) Recall from Example 1.2.10 that (z,y?) is an ideal of
T,y

klx,y]. We want to show that M is a module over R. Since M is a ring by Example 1.2.12,

variables over k. Let M =

we have that M is an abelian group under addition. We define 72 := m + (x, y?) for some
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m € M. Observing the action of R on M, we see that r - m takes m € M to rm € M for

all r € R,m € M. We also have the following:
1. (r+sym=rm-+3smforall r,s € R,me M,
2. (rs)m =r(sm) for all r,s € R,m € M, and
3. r(m+n)=rm+7rnforalre R mnec M.

Thus by Definition 1.2.16 M is a module. O

Recall from Definition 1.2.14 that for some graded ring R, R; C R is the i'" graded
piece of R, meaning that every r € R; is homogeneous of degree i. Similarly, a graded

module M has the subset M; C M that is the i*" graded piece of M.
Definition 1.2.21. Let R be aring and let M = @ M; be an R-module. If R;M; C M;,;,
1EZ

then M is a graded module. A

Example 1.2.22. Let k be a field and let R = k[z,y]. Let M = (z,y?) be an R-module.
Observe that M contains elements of different degree. We can think of M as the direct

sum of sets, each containing elements of a different degree:
M = (z,9%) = k(z) ® k(2?,y°) ® k(2®, 2y”) @ k(a2 yh) @ -

Let m € R;M;. Then m = zw for some z € R; and w € M;. So deg(z) = ¢ and deg(w) = j.
It follows that deg(m) =i + j. Therefore R;M; C M; ;. It follows from Definition 1.2.21

that M is a graded module. O

Definition 1.2.23 ([3]). Let R be a ring. Let A, B be R-modules. A map f: A — B is

an R-module homomorphism if
1. f(re)=rf(x) forallz € A,r € R,

2. flx4+y) = f(x)+ f(y) for all z,y € A.
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An R-module homomorphism is also an R-module isomorphism if it is both injective and
surjective. Two modules M and N are isomorphic, denoted M ~ N if there is some

R-module isomorphism ¢: M — N. A

When we have an R-module homomorphism from a graded R-module to another graded

R-module, the homomorphism may or may not be graded, itself.

Definition 1.2.24 ([10]). Let R be a graded ring and let M, N be graded R-modules. Let
f: M — N be an R-module homomorphism. Then f is graded of degree d if f(M,,) C Ny1q

for all n. A
Example 1.2.25. Let R = k. Consider the homomorphism

¢: k[z] — k]

r—=r-x.

Notice that for r € k[z],a € k, we have

o(ar) = arz = ap(r)

and o(r+s)=(r+s)x=rx+sr=0¢(r)+ ¢(s).

Thus ¢ is an R-module homomorphism.
Let s € ¢(k(z)). Then s = (azx) - z for some a € k. So r = az® € k(z?). Thus ¢(k(z)) C

k(x?). Observe that ¢(k(z")) C k(z'™!) for all i > 1. Therefore ¢ is graded of degree 1. ¢

We can use “twists” to keep track of the degree shifts of graded R-module homomor-

phisms.

Definition 1.2.26. Let § = @Si be a standard graded ring. Then S(n) is called the
i>0
twist of S by n and is defined by S(n); := Sitn. A

Example 1.2.27. Consider the polynomial ring S = k[z, y|. Recall from Example 1.2.15

that this ring is standard graded, so we can think of S as the direct sum of vector spaces,
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each of a different degree:
S :=klz,y =k®k(z,y) ® kz®, zy,y°) ®--- .

Note that we can multiply any of the subspaces by a variable and land in a different
subspace. For example, multiplying S1 = k(x,y) by xy moves everything in k{x,y) to
something in S3 = k(z®, zy?, 2%y, 4?). We can keep track of these shifts with the twists.
That is, for the homomorphism S ——%s S, we take elements of degree i to elements of
degree i + 2. We would like to have a map that takes degree i elements to degree i (such
a map is called homogeneous). To do this, we will twist the degrees of the source of the
map in order to preserve the degrees, i.e. S(—2) %, S. So, twisting 1 = k(x,y) by 2

giVGS S(—2)3 == 53,2 = Sl = k‘<l‘,y> <>
Another important structure is the short exact sequence.

Definition 1.2.28. Let R be aring. A short exact sequence is a sequence of two R-module

homorphisms f, g between three R-modules A, B, C"

such that f is one-to-one, g is onto, and im(f) = ker(g). A
Example 1.2.29. Consider the sequence of Z-modules:

0—>22t>7-L 707 0.

Here f is the inclusion map and g takes 1 to 1. Observe that f is a one-to-one map
and g is onto. Also note that im(f) = 2Z is all of the even integers, all of which ¢g then
takes to 0 in Z/27Z. So ker(g) = 27Z. Since f is one-to-one and g is onto, it follows that

im(f) = ker(g). 0

We will use short exact sequences to construct “resolutions” in Section 1.3.
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1.3  Generating sets, free modules, and graded minimal free
resolutions

The graded minimal free resolution of a finitely generated R-module is one of the main
structures that we will be examining in each of the following sections of this paper. In this
section, we will first state the definitions and theorems that are necessary for constructing
a graded minimal free resolution. Then we will use these definitions and theorems to

describe the construction of a graded minimal free resolution.

Definition 1.3.1. Let R be aring. Let M = Rm1+ Rmo+...+ Rm; be an R-module such
that deg(m;) = d; for all 1 <i <. Then the set m = {mq,ma,...,m;} is a homogeneous

generating set of M. If | is finite, then M is finitely generated. A

Theorem/Definition 1.3.2 ([12]). Let M be a finitely generated graded module over a
polynomial ring R = k[z1,...,x,]. Let my,...,m, € M be a homogeneous generating
set of M and define m = (x1,...,2,). We say that mq,...,m; is a minimal generating
set of M if my, mg,...,my € M/mM is a k-basis of the vector space M /mM. Notice that

R/m ~ k.

Remark 1.3.3. We want to show that M/mM is a vector space over k ~ R/m. Recall
from Example 1.2.17 that any module over a field is a also a vector space over that field.
So, it suffices to show that M /mM is a module over k. Observe that mM is, indeed, an ideal
of M by Definition 1.2.9. It follows that M/mM is an abelian group under +. It remains
to define an action of k on M/mM satisfying the properties in Definition 1.2.16(2). Let

¢: kx M/mM — M/mM be a map defined by ¢(a,m) = am. We find that

(a+b)m=(a+b)(m+ mM)=a(lm+ mM)+ b(m+ mM) = (am + mM) + (bm + mM)

(ab)m = ab(m + mM) = a(bm + mM) = abm,
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and

am+mn) =alm+mM+n+mM) =a(m+ mM) + a(n+ mM)

= (am + mM) + (an + mM) = am + an.

Definition 1.3.4 ([3]). Let R be a ring. An R-module F' is said to be free on the subset A

of F' if for every nonzero element x of F', there exist unique nonzero elements r1,79,...,7,
of R and unique aq,as,...,a, in A such that x = ria1 + reas + - -+ + rpa,, for some
nezt. A

Theorem 1.3.5 ([9]). Let R be a graded ring and let M be a finitely generated graded
R-module. Then M is the homomorphic image of a graded free R-module. In other words,

there exists a graded free R-module F' and a surjective graded R-module homomorphism,
¢
T F:@R(ni) — M = Rm1+---+ Rmy.
i=1

Proof. Let M = Rmy + Rmg + - - - + Rm; be a finitely generated graded R-module such
t

that deg(m;) = d;. Let F = @ R(—d;) be a graded free R-module. Consider the map
i=1

¢o: F — M,

(r1,re, -+, 1) = rimy + romg + - - 4 remy.

We want to show that ¢ is a graded R-module homomorphism and that ¢ is surjective.

Let (x1,...,2¢), (y1,...,y) € F and let s € R. Then
(x1, 22, ..., 14) = YN + TN + - -+ Ty,

and

A(Y1, Y2, -, Ye) = y1imy + yama + - - + ygmy.
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We have that

¢(S(l‘la T2, ... 7£Ut)) = ¢((S$1, §T2, .. -, Sl’t))
= sx1m1 + Sxomo + - - - + ST My
= s(xymy + xoma + - - + Tymy)

= s¢(x1,T2,...,2¢).
We also have that

¢(T‘1,...,7“t)—|—¢(81,...,8t) =rimi+---+remg+s1my 4+ - 4 Spmy
=(r1+s)mi+-+ (re+ se)my
=¢(r1+s1,r2 + 52,..., 7t + 5¢)

:¢((T17...,Tt) +(31;---73t))'

Thus ¢ is an R-module homomorphism by Definition 1.2.23.

Now we need to check that ¢ is graded. Consider the nth graded piece of F', given by
F, = éR(di)n. Let (s1,...,8:) € F, such that deg(s;) = n —d; for all 1 < i < n.
Then g;?;h ooy 8t) = symy + -+ + sgmy, where deg(m;) = d; for all 1 < i < n. So, for
the " summand in symq + -+ + symy, it follows that deg(sim;) = n—d; +d; = n.
Therefore deg(symy + - -+ + symy) = n. It follows that ¢(s1,...,s:) € M,. Thus we have
that ¢(F,) C M,. It follows from Definition 1.2.24 that ¢ is graded of degree 0.

It remains to show that ¢ is surjective. Let ¢ € M. Then g = i a;m; for some a; € R.
From the definition of ¢, we have that ¢(0,...,0,a;,0,...,0) :i:alimi, where a; is in the

ith place in the ¢-tuple and the rest of the entries are 0. Then

g=¢(a1,0,...,0) 4+ &(0,az2,...,0) + ¢(0,0,as,...,0) + -+ &(0,...,0,a;),
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where each t-tuple has a; in the i'® place and zeros in the remaining entries. Since we have

already shown that ¢ is an R-module homomorphism, it follows that

g=¢((a1,0,...,0)+ (0,a2,...,0)+ (0,0,as,...,0) +---+(0,...,0,a))
= ¢(ar,az,...,a;).

Thus we have that ¢ is surjective. O

Proposition 1.3.6. Let R be a ring. Then M is a cyclic R-module if and only if there is

an ideal I C R such that M ~ R/I.

Proof. First we will prove that if M ~ R/I then M is a cyclic R-module. Suppose that
M ~ R/I for some ideal I C R. Then the map p: R/I — M is an isomorphism. Let
p(1) = n for some n € M. We want to show that M = R-n. It suffices to show that for all
m € M we have that m = r - n. Let m € M. Since p is an isomorphism, then p is onto. It
follows that there is some 7 € R/I such that p(7) = m. Then since p is a homomorphism,
we have that p(T) = p(r-1) = rp(1) = r - n.

Next we will prove that if M is cyclic then M ~ R/I for some ideal I C R. Suppose that
M is a cyclic R-module. Then M = R -n for some n € M. We want to show that there is
some ideal I C R such that M ~ R/I. Using Theorem 1.3.5, we have the surjection 7: R

— M defined by 7w(r) = r - n for some r € R, n € M. Consider the short exact sequence,

0 K R—7=M 0,

where K = ker(m) = {r € R|r-n = 0}. It follows from the First Isomorphism Theorem

of modules [3, Theorem 10.2.4(1)] that M ~ R/K. O

Definition 1.3.7. Let M be a graded R-module. A graded free resolution F'. of M is an
exact sequence of graded R-modules and graded R-module homomorphisms

™0 PO P1

F.: 0 M F1 F2

Fy
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A

Theorem 1.3.8 ([4, Theorem 1.13 (Hilbert Syzygy Theorem)]). If R = k[x1,...,x,], then
every finitely generated graded R-module has a finite graded free resolution of length < r,

by finitely generated free modules.

We construct the unique graded minimal free resolution of M using free modules and

minimal generating sets.

Remark 1.3.9. Let R = k[x1,...,2,] and let M be a finitely generated graded R-module.
The unique graded minimal free resolution of M is constructed using minimal generating
sets. Let {m1,...,m;} be a minimal generating set of M. Then it follows from Definition
1.3.1 that M = Rmy+ Rmgy+- - -+ Rmy, where deg(m;) = d; for all 1 < i < ¢. By Theorem

1.3.5, we have the surjective graded R-module homomorphism
¢
mo: Fo = (D R(di) — M
i=1

defined by mo(r1,r2,...,7) = rimy + ramg + -+ + rymy. Let Ko = ker(mp). Since M is
finitely generated, we note that Fy is also finitely generated, by construction. Consider the

short exact sequence

%0

0

0—> Ko —2> Fy —% M —> 0. (1.3.1)

It follows that Ky = im(¢g) C Fp. Since Fp is finitely generated, it follows from Remark
1.1.1 that Kp is finitely generated. Let {si,...,s} be a minimal generating set of K
such that deg(s;) = e;. Then by Theorem 1.3.5 we have the surjective graded R-module

homomorphism

l
m = @R(ez) — K.

i=1
Let o1: F1 — Fy be the map defined by o1(f) = ¢o(m1(f)). Note that F; is finitely

generated by construction. Then we have
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AN
/X

Let K; = ker(m1). Then we have the short exact sequence

1

1

0 Ki I Ky 0.

It follows that K7 C F}. Since F} is finitely generated, it follows from Remark 1.1.1 that K3
is finitely generated. Then by 1.3.5 there is a surjective graded R-module homomorphism

mo: Fy — K. Let 01: F5 — Fi be the map defined by o1(f) = ¢1(m2(f)). Then we have

0 g0

0 M Iy

F S P
1 ‘\m 17 2
Ky
0 ™ 0
Let Ky = ker(m2). We can continue in this manner until we are left with ker(m,) = 0 for

some 1 < r < n (given by Theorem 1.3.8). The result is the graded minimal free resolution

of M:

O

klz,y]
(2, 9?)
Theorem 1.3.5, there exists a surjective graded R-module homomorphism from some free

Example 1.3.10. Consider the ring R = k[z,y] and the R-module M = . By

R-module onto M. Note that M is R modulo an ideal, so by Proposition 1.3.6 it follows

that M is cyclic. Therefore the minimal number of generators of M is 1. So, to construct

k
the minimal free resolution of ([:z:,;g% as an R-module, we start with the natural map
z,y
k _
oo: klz,y] — [:n,g;] that takes 1 to I:
(. y?)
k
0 [x’g] T klz,y]
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Then the kernel of o is (z,%?), and the inclusion map ¢g: (z,y*) — k[z,y] is one-to-

one, giving the short exact sequence:

00 k[flf,y]
(z,9?)

ol

0 — (x,9?) klz,y]

Note that (x,y2) is finitely generated. Then by Theorem 1.3.5, we have a graded sur-

jective R-module homomorphism
01: k[$7y](—1) D k[l‘,y](—2) - (x7y2)

defined by o1 ([ Z }) = rz + sy®. The map o1 composed with ¢g gives us a map

po = ¢o 001 @ — klz,y]

Then we have

klz,yl(=1)
0 k[xvg] o0 K[z, y) P0 S
@y Kz, y)(~2)
%o y
(z,9?)
) / \ .

It follows that
. —y*klz, ]
keralz{[s]\rm—i—syQ:O}: ® .

We define the inclusion map
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2
—y k[, y]
Since @ is finitely generated, then by Theorem 1.3.5 we have the graded surjec-
k[, y]
tive R-module homomorphism
—y?klz, y]
oz: klz,y](=3) — ®
zklz,y]
2
O’Q('f‘) — |: e :| .
~yklz, y]
Let p1 = ¢1 0 09: k[x,y](—3) — @ . Then we have
zklz, y]
klz,y](=1)
k[z, o ’
R Rl U B - Kl )(-3)
Y ke, y)(=2) o
%
2
-y ]{[.%’,y](—l)
S
—ry? 0 ..
Then kerog = {r € klz,y] | { - } = [ 0 ] } = 0. Therefore the graded minimal free
resolution of k[:r:,é/] is
(z,9%)
klz,y](—1)
klz, o ’
0 e I [ P
ey e v(-2)

1.4 Betti diagrams and Betti decomposition

We can record information about the twists and generators of any resolution with its

unique Betti diagram. Betti diagrams require a very specific indexing to keep track of this

information.
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n
Definition 1.4.1. Let V := @ @Q. A diagram is an array D € V. A
i=0 jeZ

By convention, we use dashes in place of zeros, and do not distinguish between diagrams

with the same non-zero entries. For example, let V = @ EB Q. Then
i=0 Z

o= OO -

co R, O -
O = O O
Il
N
| =
=
=
N~
m
<

is a diagram.
A “Betti diagram” is a diagram with “Betti numbers” as entries. These Betti numbers

are given by the degrees of the different graded pieces of a graded free resolution.
Definition 1.4.2. Let S be a standard graded ring. Let M be a graded free S-module
with free resolution

F.: 0 M<"°

Fy

Each Fj; is a direct sum of graded pieces,

F=PS(-i)
where ;; is the number of summands S(—j) in F;. We call 3;; the i7" Betti number of

M and denote it 5;;(M). The Betti diagram of M is given by

Boo B Baz o PBuan
BM)=| Box Biz P2z - Bunt

A

Or, equivalently, 3;;(M) is the number of degree j generators of a basis of Fj. Let’s

klz,y]

. Recall the resolution F'.
(z,9?)

construct the Betti diagram of the graded module M =
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ke, y] <— klz,yl(=1) © klz,y](=2) <— k[z,y](=3) =0,

where Fy = k[z,y], Fi = klz,y](—1) @ k[z, y](—2), F» = k[z,y](—3). The entries in column
0 of the Betti diagram 3(M) are given by Fy = @k[m,y](—j)BOj(M). Since Fy = k[z,y] =
E[x,y](0)', then Byo(M) = 1 is the only one non-zero entry in column 0. The entries in

column 1 of B(M) are given by

Fi = @D bl y)(—)?s D
= klz,y)(-1)" @ k[z,y](-2)",

so f11(M) =1 and B12(M) = 1 are in column 1 of S(M). Similarly, we find that B2 (M) =

klzy]
(z,y?)

0 and [23(M) = 1 are in column 2 of 3(M). So, the complete Betti diagram of

s(E)-(t 7).

As mentioned in Section 1.1, one of Boij and Séderberg’s first conjecture was that Betti

diagrams could be written as linear combination of pure diagrams (See Theorem 1.4.4).
FEisenbud and Schreyer later developed an algorithm that decomposes Betti diagrams into
linear combinations of pure diagrams. This algorithm requires “degree sequences” to keep
track of the information stored in a Betti diagram as it is decomposed.

We call a diagram A a pure diagram if it has at most one entry in each column. For

example, the following diagram is a pure diagram:

2
A:<1 2 3 ‘). (1.4.1)
- - 2 6

Definition 1.4.3. The n-tuple d € Z" is a degree sequence if dy, < dj,1 for all k. We can

compare two degree sequences: d < d’ if d; < d for all i. A
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Each pure diagram A has a corresponding “degree sequence” d € Z" that tells us the
form of A, i.e. where the nonzero entries lie in A. The indexing of A is constructed in such
a way that the nonzero entry of A in column r and row s is given by a,,4+s = a;;. Each
nonzero entry a;; corresponds to d; = j in the degree sequence of A. Before stating a formal

definition, let’s work through an example of a pure diagram and its degree sequence.

Consider the pure diagram 1.4.1. The nonzero entries in A are agp = 1,a11 = 2, a9 = 3
and as4 = 6. The degree sequence only holds information about where the nonzero entries
are in A and does not care what the values actually are. To construct the degree sequence
of A, we only need the list of the %,j ordered pairs corresponding to the locations of
nonzero entries in A. To construct the degree sequence d using this list, we let d; = 7. So
do =0,d; = 1,da = 2,d3 = 4, and the degree sequence of A is d = (0,1,2,4).

The location of nonzero Betti numbers of a Betti diagram is important because it holds
information about the degree shifts of the corresponding minimal free resolution. Let S
be a ring and let M be an S-module. Let F. be the minimal free resolution of M. Recall
from Definition 1.4.2 that the 75" Betti number of M, denoted Bij, is the number of copies
of S twisted by j in Fj. So, the location of Betti numbers in the Betti diagram (M) is
directly related to the degree shifts in F..

The conjecture of Boij and Soderberg view the diagrams as just sitting inside some
vector space, so we should be able to write them as linear combinations of basis elements.

This conjecture, stated as follows in Theorem 1.4.4, was later proved by Eisenbud and

Schreyer.

Theorem 1.4.4 ([2],[5]). Let M be a module of finite length. Then there is a unique chain

of degree sequences {dy < --- < ds} and unique scalars a; € Q such that

M) = 3 aim(dy),
=0

where each 7(d;) is a pure diagram.
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An algorithm was developed by Eisenbud and Schreyer to figure out this linear combi-

nation.

Algorithm 1.4.5 ([5]). Let 8 be a diagram.

1. Find the top-most nonzero entry in each column of 8 and construct the degree
sequence d = (ag,a,as,...,a,) corresponding to these top-most nonzero entries.
Construct an elimination matrix 7(d) from this degree sequence d:

0 if j #d;

mii(d) = 11 ifj=d;

P
1714 |dZ — dz”
2. Find a maximal k € Z" such that each entry of 3 — kr is greater than or equal to 0.

3. Go back to step 1 with 8 — k7 instead of 5. Repeat until each entry of the matrix

in step 2 is exactly 0.

Example 1.4.6. We compute the Betti decomposition of the diagram

Given this diagram, we want to decompose 8 down to a linear combination of pure dia-
grams. Following the algorithm, we find and circle the top-most nonzero entries in each

column:

=5 a)

The form of these circled entries give the degree sequence dy = (0, 1,3), which gives us
1 1

the elimination matrix 7(dy) = 3 2 1

6
Now we need to find the largest positive integer k such that each entry in § — kn(dp)

is greater than or equal to 0. In particular, we need the largest integer solution to the
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inequalities

k

1—-=->0
3—7
k

1-=->0
2—7
k

1—-=>0
6>

From these inequalities, we find that & is at most 2. So, we subtract 27 (dy) from g:

1

B —2m(dg) = | 3 9
-1 3

Starting again with step 1, we circle the top-most entries of 8 — 27 (dp):

and construct the corresponding degree sequence d; = (0,2, 3) and matrix

1

2
Observe that 27(dy) = 8 — 2n(dp). Then 8 — 27(dy) — 27(dy) = 0. So, we are left with

W =

8= 27T(d0) + 27T(d1). O

So now we have this nice algorithm that lets us write diagrams as linear combinations
of pure diagrams (or basis elements). However, this Betti decomposition algorithm does

not work nicely for any and all diagrams.

1.5 Hilbert function

Given a diagram D, how can we tell whether or not it is a Betti diagram? Right away, we
can figure out what the corresponding resolution would look like based on the entries in

D. For example, consider the diagram

p—(1 1)
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The corresponding resolution would look like this:

0 M S 0 S(—2) <———0,

and there is no M for which this is a resolution. Therefore D is not a Betti diagram. But
there are more complicated diagrams that we cannot immediately dismiss as not being a
Betti diagram. One way to check whether a module M exists for a given resolution is to

see whether the dimensions match up. We can do this using the Hilbert function.

Definition 1.5.1. The Hilbert function gives us the vector space dimension of a module

M over a field k with respect to the graded degree [. The function is given by
Hy (1) := dimg M.

A

l+n—1

Lemma 1.5.2. Let S = k[z1,...,xy] be a ring. Then dimyS; = ( .
n—

> 1s the number

of degree | monomials in S.

Proof. We use the stars and bars technique, where each arrangement of stars and bars
represents a degree [ monomial in S. In this case, the stars are the variables making up
the monomial and the bars separate the stars in terms of variable type. We find that there
are n — 1 bars and [ stars, so there are [ +n — 1 total places for stars and bars. We first
choose the positions of the n — 1 bars, which forces the positions of the stars. It follows

that there are <l tn-

1 ) possible arrangements of stars and bars. O
n [R—

Example 1.5.3. Let S = k[, y, z]. Suppose we want to figure out how many monomials
of degree 4 are in S. Note that each degree 4 monomial in .S is consists of 4 variables, which
are some combination of z,y, and z. We can represent this using stars for the variables

in each monomial and bars for the 3 different degree 1 variables in S. We will use two
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bars to separate the four stars into three sections, which correspond to the three degree 1

variables in S. For example

EEEIES

represents the degree 4 monomial y3z. In this way, each degree 4 monomial in S can be

represented by a different configuration of 4 stars and 2 bars. To count the number of

degree four monomials in S, we need to count the number of possible configurations of

four stars and two bars. Observe that there are 6 objects total that we can rearrange, and

that choosing where to place the bars will force the positions of the stars. So, there are

(g) = 15 degree 4 monomials in S:

2 ek I R T T I A T ey
23 k|eex ay2®s klkper mylzr kpex|x oz x|k

2222 wx|lex 2Pyzr o oex|E]x 2P9%r ||

23z x| aiy: kx|

zh |

It follows that we can express the number of degree [ monomials in S as (

l+n—1
l

theorem, stated in Fact 1.5.4, allows us to compute the Hilbert function.

equivalently (

Fact 1.5.4 ([7, Theorem 5.3.8]). Let

0 K A

be a short exact sequence of k-vector spaces. Then

dimy (ker(f)) + dimg (im(f)) = dimg(A).

Note that since the sequence in Fact 1.5.4 is exact, we have that ker(f) = A and

im(f) = C. It follows that for any short exact sequence of vector spaces over k

0 K A C 0,

l4+n—-1
n—1

O

> . Lemma 1.5.2 along with a generalized version of the rank-nullity
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we have that dimy(A) = dimg (K) + dimg(C).

Proposition 1.5.5. If F'. is an exact sequence of k-vector spaces,

F.. 0 M<2 < <" P F, 0,

then dimpM = Z(—l)idimkﬂ.
1=0

Proof. Let F. be an exact sequence of k-vector spaces,

Po p1 P2 p3 pPn

F.: 0 M

Fy 3] B F, 0.

We will use the notation K; = ker(p;) for all 0 < i < n. Consider the kernel of pg, denoted

K. Then we have the short exact sequence

0 Ky Fy—2 =M 0.

It follows from Fact 1.5.4 that dimyFy = dimg Ky + dimi M. So

Since F'. is an exact sequence, we have that ker(p;) = im(p;+1) for all 0 < i < n. It follows
that Ky = im(p1). Then Ky C Fy. So we have the inclusion map o¢: Ko — Fp. We also

have the surjection p;: F1 — Kjy. So

14 P2 Pn

F.: 0 M<" g ! F F, 0
N
Ky
0/ \0
(1.5.2)

Now consider K. Since F. is exact, we have that K7 = im(p2). Then K; C Fj. So we have

the inclusion map o1: K1 — F} and the surjection po: Fo — Kj. Adding these maps to
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(1.5.2), we have

n R p1 o) p2 7 3
o0 P o1 p2
\KO/ \Kl/
NN,
Observe that we now have the short exact sequence
0 K—" " 5K, 0.

It follows from Fact 1.5.4 that dimgF; = dimg K7 + dimy Ky. Then dimg Ky = dimg F; —

dimy K. Substituting dimy F} — dimg K7 for dimy Ky in (1.5.1), we have that

dlmkM = dlmkFO - (dlmkFl — dlkal)

= dimkFo - dimkFl + dikal.
Using a similar argument, we find that dim; K7 = dimgF5 — dimg K. It follows that
dimpM = dimg Fy — dimg Fy + dimg Fo — dimg K.

In fact, we find that dimpK; = dimgF;11 — dimg K; 41 for all 1 < ¢ < n. It follows that

dimp M = "(—1)'dim; F. O
=0

Example 1.5.6. Let S be the polynomial ring k[x,y]. Consider the resolution of M =

klz,y]/(x,y*) = S/(z,y?) and its corresponding Betti diagram B(M):

0 M S S

Then
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Breaking up the direct sums, we get Hys (1) = Hs(1)—(Hg(—1)(1)+Hg(—2) (1)) +Hg—3)(),
where Hg(l) = dimgS; is the dimension of the [t graded piece of S, i.e. the number

of degree | monomials in S. By the above lemma, we have Hg;(l) = dimg(5(7)) =

<l + 21+ 1). It follows that

I+1 I—1+1 [—2+1 [-3+1
mar=() - () - () +(7)
Observe that Hy(0) =1, Hy (1) =1, and Hp(n) =0 for n > 2. O

For any given M with resolution F'. and Betti diagram (M), we have

HM(Z) = Z(_l)iHFi(l)
= > (—1)'B(M)iHg(_j (1),
,J

where

0 il <d
Hs(,d)(l): ((l—d)+n—1> 0>d

n—1

We can extend this to get information about whether a diagram is a Betti diagram for
some module M. Since it doesn’t make sense to have a module with dimyM < 0, we can

conclude that if Hp(l) is negative for some [ € Z then D is not a Betti diagram.

Lemma 1.5.7 ([9]). Let D be a diagram. If Hp(l) < 0 for some l € Z then there is no

module M such that 3(M) = D, i.e. D is not a Betti diagram.

We cannot conclude from Lemma 1.5.7 that the diagram from Example 1.5.6 is a Betti
diagram. But Lemma 1.5.7 tells us that the diagram from Example 1.5.6 might be a Betti

diagram.
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Short exact sequences and Betti decompositions

With the information provided in Chapter 1, let’s take another look at Question 1.2.1. We

state it here for convenience.

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

2.1 A class of Betti diagrams

Recall from Example 1.4.6 that

=
Il
N
—
[
|
~_
Il
no
wl| =
N =
|
[ =
[
|

+ 2

|~
N | =
Wl =

It turns out that this can be extended to all Betti diagrams of the form (ﬁ Z ;) .



2. SHORT EXACT SEQUENCES AND BETTI DECOMPOSITIONS 41

Theorem 2.1.1. Any Betti diagram of the form 8 = (ﬁ Z ;) can be written as

W =
N | =
| =

6 2 3

Proof. We will prove this using Algorithm 1.4.5. Note that since we are looking at Betti

diagrams of the same form, the initial degree sequence and pure diagram will always be

1 1
do = (0,1,3) and n(dy) = | 3 2 1 |- The largest a € Z" for which each entry in
- - )
B — am(dp) is positive is the largest positive integer that satisfies the inequalities n — 3 >
n
a a 3
O,n—izo,andn—gzo.Soaz?n.Thenﬁ—%m(do): m,
J— n E—
3
Now we have another degree sequence d; = (0,2,3) and pure diagram w(d;) =
1
6 1 1 |- (Note that any Betti diagram of the same form as 8 will have the same

2 3
first degree sequence d; and pure diagram 7(d;).) Observe that 2nw(d;) = f — 2nn(dp).

Then 8 — 2nn(dy) — 2nm(dy) = 0. It follows that 5 = 2nm(dy) + 2nm(dy). O

Example 2.1.2. Let R = k[z,y]. Consider the finitely generated graded R-module M =

k
( 2, 22/% from Example 1.2.12. Using Macaulay2 [8], we find that resolution of M & M is
T,y

R(-1)
©®
M R R(-2) R(-3)
O=— & ~— ¢ <=— % -~ ©® ~—0,
M R R(-1) R(-3)
®
R(-2)

which has the Betti diagram (M & M) = <E g ;) By Theorem 2.1.1, the Betti

decomposition algorithm of (M & M) gives us

N
D=

1
BMaeM) =43

+4

=
N —
W —
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So, looking at the short exact sequence

k[, y] klz,y] _ klz,y] klz,y]
(z,9?) (z,92) ~ (z,9%) (z,9?)

we find that the Betti decomposition of the middle module is the sum of the Betti decom-

0,

positions of the two outer modules. O

2.2 Direct sums of finitely generated graded R-modules in short
exact sequences, and their Betti decompositions

Consider the short exact sequence of finitely generated graded R-modules M, N:
0O— M —>Me&N-—N——0.

We want to describe the relationship between (M & N) and (M), B(N). In Corollary
2.2.3, we find that

B(M) + B(N) = S(M © N).
In the case where
n n —
san == (" 7 ).
there is also a nice relationship between the Betti decompositions of 5(M), 5(N) and the

Betti decomposition of 5(M & N).

Proposition 2.2.1. Let R be a ring. Let f,g be R-module homomorphisms. Then

ker(f) @ ker(g) = ker(f @ g)

and

im(f) @ im(g) = im(f © g).

Proof. Let R be a ring. Let A, B, C, D be R-modules such that ANC = and BND = ().

Let f: A— Band g: C — D be R-module homomorphisms. Then A@® C and B ® D are
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R-modules. So, we have the R-module homomorphism

f®g:AeC —-B@D
(a,c) = (f(a),g(c)).

We want to show that

ker(f) @ ker(g) = ker(f @ g) (2.2.1)

and
im(f) @ im(g) = im(f & g). (2.2.2)

To prove (2.2.1), it suffices to show that
ker(f) @ ker(g) C ker(f @ g)

and

ker(f @ g) € ker(f) & ker(g).

Let (a,c) € ker(f) @ ker(g). Then a € ker(f) and ¢ € ker(g). Then we have f(a) =0
and g(c) = 0. So by definition of f @ g, it follows that (f @ g)(a,c) = (f(a), g(c)) = (0,0).
Therefore (a,c) € ker(f @ g). It follows that ker(f) @ ker(g) C ker(f & g).

Let (a,c) € ker(f @ g). Using a similar argument in the reverse direction, we find that
(a,c) € ker(f) @ ker(g). Therefore ker(f @ g) C ker(f) @ ker(g). Then (2.2.1) follows.

To prove (2.2.2), it suffices to show that

im(f) @ im(g) C im(f @ g)
and
im(f @ g) € im(f) & im(g).
Let (b,d) € im(f) ® im(g). Then b € im(f) and d € im(g). It follows that b = f(a),d =

g(c) for some a € A, c € C. By our definition of f@g, we have that (f(a),g(c)) € im(fDg).

It follows that (b,d) € im(f @ g). Thus im(f) @ im(g) C im(f & g).
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Let (b,d) € im(f & g). Following the same argument in the reverse direction, it follows

that (b,d) € im(f) @ im(g). Then im(f & g) C im(f) & im(g), so (2.2.2) follows. O

We use Proposition 2.2.1 to prove Proposition 2.2.2.

Proposition 2.2.2. Let R = k[x1,...,z,] be a ring over a field k. Let M, N be a finitely
generated graded free R-modules. Let F'. be the minimal free resolution of M and let G.
be the minimal free resolution of N. Then the minimal free resolution of M @& N 1is given
by

H.: 0

M@ N Hy H, Hy,

where H; == F; ® G;.

Proof. Let R = k[x1,...,z,] be a ring over a field k. Let M, N be a finitely generated
graded free R-modules such that MNN = (. Let M be of length {5, and let m be a minimal

generating set of M. Let F. be the graded minimal free resolution of M constructed as in

Remark 1.3.9,
F.: 0 M F %o ja) 1 Par-1) i3
.. fl B 7(l ) M*
ker (o) ker (1) ker(7yy,, ;)
0 - \O SN \0

Similarly, let N be a finitely generated graded free R-module of length Iy and let n be a
minimal generating set. Let G. be the graded minimal free resolution of N constructed as

in Remark 1.3.9,

G.: 0 N Go Po Gy P



2. SHORT EXACT SEQUENCES AND BETTI DECOMPOSITIONS 45
It follows that Fy, G are finitely generated free R-modules constructed using the degrees
of the minimal generating sets m,n of M, N, respectively. And for ¢ > 1, each F;,G; is a
finitely generated free R-module constructed using the degrees of the minimal generating
sets p;, qi of ker(;),ker(¢;), respectively. Refer to Theorem 1.3.5 and Remark 1.3.9 for
more detail regarding the construction of F;, G; using the degrees of the sets p;, ;.

In order to prove Proposition 2.2.2, we will construct the graded minimal free resolution
H. of M & N. As we describe this construction, we will show that each H; = F; & G; in
the graded minimal free resolution of M & N.

Consider M & N. Since m,n are minimal generating sets of M, N, respectively, it follows
that m @ n is a minimal generating set of M @& N. By Theorem 1.3.5, there is a finitely
generated free module Hy constructed using the degrees of elements of m @ n and the
surjective graded R-module homomorphism mg: Hy — M @ N. Recall that we have the
surjective graded R-module homomorphisms vq: Fy — M and ¥g: Gy — N where Fy, Gy
were constructed using the degrees of m, n, respectively. It follows that Hy = Fy & G and

that

T =" B vYo: Fo®& Gy — M & N.
Then we have the short exact sequence
40 o
O*>ker(7r0) —Hy— M & N —0.

By Proposition 2.2.1, we have that

ker(mg) = ker(vo @ o)

= ker (7o) @ ker(t)o).

Recall that pg,qo are minimal generating sets of ker(~), ker(v), respectively. It follows

that pg @ qo is a minimal generating set of ker(mp). By Theorem 1.3.5, there is a finitely
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generated free R-module H; and a graded surjective R-module homomorphism
w1 Hi — ker(ﬂo)

such that H; was constructed using the degrees of pg ® qo. Recall that we have the graded
surjective R-module homomorphisms v;: F; — ker(v) and ¥;: G; — ker(yy) where
Do, qo are minimal generating sets of ker(~p), ker(vp), respectively, and Fi,G; are con-

structed using the degrees of pg, qo, respectively. It follows that H; = F} & G and that
T =71 DY F1 & G — ker(y) @ ker(¢g) = ker(mp).
Then we can define the R-module homomorphism
0o = 0p o m: H — Hy.
Then we have

o

0 M& N H H; .
T
0

0 - 1
w /
ker (7o)

SN,

Observe that

0 — ker(my) o, H; > ker(mg) —= 0

is a short exact sequence. Recall that m; = 1 @ 1. Therefore

ker(my) = ker(vy1 @ 1)

= ker(v1) ® ker(¢1).

Recall that ker(~1), ker(1)) are finitely generated by minimal generating sets p1, q1, respec-
tively. It follows that p; @ ¢; is a minimal generating set of ker(~y;) @ ker(v1). Therefore
p1 ® q1 is a minimal generating set of ker(71). Then we have a surjective R-module ho-

momorphism 7o: Hy — ker(m) where Hs is constructed using the degrees of p; @ ¢;.



2. SHORT EXACT SEQUENCES AND BETTI DECOMPOSITIONS 47

Recall that Fs, G2 are constructed using the degrees of p1, g1, respectively. It follows that
Hy = F» @ Gs.

We can continue in this manner to find the surjective R-module homomorphisms
mi: Hy = F; & G; — ker(m;—1) = ker(v;—1) @ ker(v;_1)
for i < maxly,Iy. ]

The following corollary is a direct result of Proposition 2.2.2.

Corollary 2.2.3. Let R = k[x1,...,x,] be a ring over a field k. Let M, N be a finitely

generated graded free R-modules. Given the short exact sequence
0O—M—>M&N—N—0,

then B(M) + B(N) = B(M & N).

For the specific class of Betti diagrams described in Section 2.1, we have a further result
that relates not only the Betti diagrams of the modules in a short exact sequence, but also
their Betti decompositions.

Proposition 2.2.4. Let R = k[x,y] be a ring over a field k. Let M be a finitely generated

n n
- n

free graded R-module with the Betti diagram B(M) = ( ;) Given the short exact

Sequence

0O—M-—MesM—M—0,

the sum of the Betti decompositions of the two outer modules is the Betti decomposition

of M & M.

Proof. Let R = k[z,y] be a ring over a field k. Let M be a finitely generated free graded

R-module with the Betti diagram S(M) = (n " _>.

- n n
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By Corollary 2.2.3, we have that

B + 500 = s o a0 = (M 30 )

. By Theorem 2.1.1, we have the Betti decompositions of M and M & M:

1 1 1
By =203 2 42w |6 4 4,
6 2 3
1 1 1
BM&M)=4n|3 2 | |+4n|6 |
6 2 3
Observe that
1 1 1
6 2 3
11 1
6 2 3
1 1 1
6 2 3

Thus the Betti decomposition of M added to the Betti decomposition of M is the Betti

decomposition of M & M. O
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Complete intersections

Recall from Section 1.2 the second main question, stated here for convenience:

Question 1.2.2. Let S = k[z1,...,x4] be a polynomial ring over a field k and let I =
(f1,..., fa) be an ideal of S generated by a homogeneous reqular sequence with deg(f;) = e;.

What is the Betti decomposition of S/I in terms of the degrees e;?

In [6], this question was posed an answered up to codimension < 3 (see Proposition

3.1.4).

3.1 Complete intersections in codimension < 3

Before going into the exciting new answers to Question 1.2.2, we must first define the new

terms from Question 1.2.2.

Definition 3.1.1. Let R be a standard graded ring. Then fi,..., fg is a homogeneous

regular sequence on R if
i. f; is homogeneous for all 1 <7 < d,

ii. the ideal (f1,..., f4) # R,
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iii. there is no non-zero g € R such that f; - g =0, and

iv. for all 2 < ¢ < d, there is no non-zero g € R/(f1,..., fi—1) such that g - f; = 0.

Example 3.1.2. Let R = k[z,v, z]. Then 2,47, 28 is a homogeneous regular sequence on

R. Observe that 334,3/7, 2% are all homogeneous. Consider the ideal (x4, y7, 28) C R. Note

that zy € R and zy ¢ (z*,y7,2%), so (2,97, 2%) # R. Observe that z* -7 # 0 for all

non-zero r € R. Consider 5 € R/(z*), 5#0. Then 5 = s + (z), and 4" -5 =3" - s + ().

Since 5 # 0, it follows that s is not a multiple of x*. This forces 3" -5 # 0. Consider
0

teR/(ahy"), t#0. Then =t + (z',y"), and 2%t ¢ (a%,y7). S0 2° - 1 # O

Definition 3.1.3. Let S = k[x1,...,z,] be a polynomial ring over a field k. Let fi,..., fg

be a homogeneous regular sequence. If I = (fy,..., f4), then the ring S/I is called a graded

complete intersection. A
We say that a complete intersection of the form k[x1,...,z4]/(f1,..., fqa) is in codimension
d.

The initial answer to Question 1.2.2 from [6] is restated in Proposition 3.1.4.

Proposition 3.1.4 ([6]). Let S = k[z1,...,zq4] be a polynomial ring over a field k and
let I = (f1,...,fq) be an ideal of S generated by a homogeneous regqular sequence with
deg(fi) = e;. If d < 3, then the Betti decomposition of S/I obtained from Algorithm 1.4.5

1s completely determined by the degrees eq,...,eq. In particular, for
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d=1: B(S/I) = e1-m(0,e1)
d=2: B(S/I)=-erez-m(0,e1,e1 + e2) +erez - (0, e2,e1 + €2)
d=3: Ife; <ey <es, then

B(S/I) = erea(ea+e3) m(0,e1,e1 +e2,e1 + €2 + €3)
+erea(es —e1) - m(0,e2,e1 + €2, €1 + €2 + €3)
+2€1€2(61 +e3 — 62) . 7r(0, ex,e1 +e3,e1 +ex+ 63)
+erea(es —e1) - m(0,e3,e1 + e3,e1 + €2 + €3)
+erea(ex +e3) - (0, e3,e2 + e3,e1 + €2 + €3)

In Section 3.2, we extend Proposition 3.1.4 to d = 4. This will allow us to describe the
Betti decomposition of complete intersections of the form S = k[x,y, z, w]/(z®', y, 2%, w®),

for eq, eq, e3,e4 € ZT. We consider the the first five of the following cases:
(i) e1 = ey = e3 = ey,
(ii) e] = eg = €3 < ey,

(i) e; = e2 < e3 = ey,

(iV) e1 < eg = e3 = ey,
(V) e1 = ez <e3 <ey,

(vi) e1 < e2 = e3 < ey,

(vil) e1 < eg < ez = ey,

(Viii) e <eg <eg<ey.

3.2 Cases of complete intersections in codimension 4

We will consider cases (i), (i), (ii7), (iv), and (v), as stated at the end of the previous

section. In the following proofs of Propositions 3.2.1, 3.2.2, 3.2.3, and 3.2.4, we omit the
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entries in the first and last columns in the Betti decomposition algorithm because these

entries will always be eliminated in the final step of the algorithm.

Proposition 3.2.1. Let S = k[z,y,z,w] be a polynomial ring over a field k and let
I = (2%, y*, 2% w®) be an ideal of S generated by a homogeneous reqular sequence. Then

the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by
B(S/I) = 24017 (0, a, 20, 3, 4ax).

Proof. Let S = k[z,y, z, w] be a polynomial ring over a field k and let I = (=, y, 2%, w®)
be an ideal of S generated by a homogeneous regular sequence. We construct the graded

minimal free resolution of S/I as described in Remark 1.3.9:

S/ «—— 8§ «—— §4—0) ~—— 88(—20a) ~—— 5%(—3a) ~—— S(—4a) «——0.
The corresponding Betti diagram ((S/I), denoted /3, has nonzero entries given by

Bo,o = 1,B1,a =4, 8220 = 6,330 = 4, Ba,aa = 1.

We use Algorithm 1.4.5 to find the Betti decomposition of S/I. The first and only degree
sequence for the decomposition of this Betti diagram is d = (0, o, 2c, 3av, 4cx) with corre-

sponding elimination matrix 7(d) with nonzero entries:

1
m(d)y o = 6ol

1
m(d)g 00 = ot

1
m(d)3 30 = Gl

Observe that § = 24a*7(d). O
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Proposition 3.2.2. Let S = k[z,y,z,w] be a polynomial ring over a field k and let
1= (:):O‘,ya,za,w‘s) be an ideal of S generated by a homogeneous regqular sequence. Let

a < 0. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

B(S/I) = 6a6m(0,,2a,3a, 3a + )
+6a367(0, o, 2a,, 20 + 6, 3a + 6)
+60367(0, o, a + 6, 20 + 6, 3a + 6)

+6a36m(0,8, o + 6, 2a + 0, 3 + 6).

Proof. Let S = k[z,y, z,w] be a polynomial ring over a field k and let I = (z%, y*, 29, w‘s)
be an ideal of S generated by a homogeneous regular sequence. Let o < . We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:

S3(—a) S3(—20a) S(—3a)
S/ <—S~<— S3) <~ S -~ 2] ~— S(=3a—9)<—0.
S(—0) S3(—a — 6) S3(—2a — 6)

Then the Betti diagram of S/I, denoted ﬁ(o), has nonzero entries

0 0 0 0 0 0 0 0
B0 = 1,800 = 3,80 = 1,83, = 3,850 15 = 3. 8500 = 1, Bysass = 3. B aass = L.

We follow Algorithm 1.4.5 to find the Betti decomposition of 5 ), The first degree sequence
in the decomposition of () is given by dy = (0, a, 2cr, 3, 3ar+-9). Then the nonzero entries

of the first elimination matrix are given by m(dp):

1
o)1e = 30330 1 9)

1
T(do)g.00 = 2030 1 0)

1
m(do)3 30 = 6ads”

We want to construct a new M) = 15} © —xom(do) by substracting a scalar multiple 2o € Z*
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of w(dy) from B so that the result has entries 0 or greater than 0 and that we eliminate

one of the nonzero entries from A?). This scalar will be the largest xg that satisfies the

following inequalities:

zo
_— >
2a3(2a +0) — 0
>0
203 (o + 6) ) -
— >0
6 >

We see that 6a°d satisfies the above inequalities. Then 8" = 30 —6a367(dp) has nonzero

entries given by

1 6
Bl(’la 246
5175 =
a 3a
22 T 46
1
657;4—6 =
1 _
(1)3,3a -
53,2a+5 =

Following Algorithm 1.4.5, we have the degree sequence d; = (0, a, 2a, 2ac + 8, 3 + 6) and

nonzero entries of the corresponding elimination matrix m(d;):

1
()0 = a2(a+ 0)(2a + 0)
1
m(d1)g00 = 2025(a 1 )
1
d - .
T )s205 = 5ot 5)(2a 1 0)

We find that the largest z; such that each entry of 3 = 81 — z17(dy) is greater than

or equal to 0 is 6a°4:
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(%6 _ T 0
2a04+6  o?(a+6)(2a+9)
3 1
— >0
a+dé  2a%5(a+0) ~
3 — 7 >0

ad(a+90)(2a+6)

Then the nonzero entries of 6(2) are given by

B(g) B 6a?

0,0 - (2a + (5)8304 +9)
6(2) _ 6a

L (v +0)(2a+9)
frg =1
e !
BQ,&+5 =3
B(g)  36(3a+9)

3

200 (o + 6) (200 + 6)
_(5a? 4 6ad + 62)

PO '
4,3a+6 (a+0)(2a+ 6)(3a + §)

Then the next degree sequence is do = (0, o, + 6, 2ac + 6, 3av + 0) and the nonzero entries

of the elimination matrix 7(ds) are

1
™2)va = e T o) @a T o)
1
7(d2)g o5 = 20250 £9)

(35015 = 1
T)32046 T 02 (0 4 5) (20 + 0)

We find that 6a° is the largest xo such that 6(3) = 5(2) — x907(d2) has entries that are

greater than or equal to zero. The nonzero entries of ﬁ(g) are:
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Bla =0
ﬁfg - 30

3

(3) 30
/8372(X+6 20{ +5

Then we have our final degree sequence ds = (0,0, + 6, 2a + 9,3 + §) and the nonzero

entries of the corresponding elimination matrix 7(ds):

1
ﬂ-(d3)1,5 = 60(35
1
d -
7T( 3)2,a+6 2043(01—}-5)
1

m(d3)3 9045 = 203201 0)"
Observe that 3 = 6a°d7(ds). Then
BO = 607 (0, a, 2, 3ev, 3o + )
+6a367(0, a, 20, 20 + 6, 3cr + 0)
+60307(0, a,  + 8, 200 + 6, 3 + )
+60307(0,8,a + 8,20 + 6,3 4+ 6). [
Proposition 3.2.3. Let S = k[z,y,z,w] be a polynomial ring over a field k and let
I = (xo‘,ya,z‘s,w‘;) be an ideal of S gemerated by a homogeneous reqular sequence. Let
a < 0. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by
B(S/I) = 4025%7(0, o, 2a, 2a + 8, 2a + 20)
+20%5(a + 380)m(0, o, o + 6, 2a0 + 6, 200 + 20)
+40%5(6 — a)m(0, 8, + 6, 2 + 6, 2¢ + 26)
+20%5 (o + 38)m(0, 6, o + 8, ¢ + 28, 200 + 26)

+4025°7(0, 8,26, a + 26, 2a0 + 26)
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Proof. Let S = k[x,y, z, w| be a polynomial ring over a field k and let I = (=, y“, 20, w‘s)
be an ideal of S generated by a homogeneous regular sequence. Let o < 6. We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:

S(—2a)
S?%(—a) © S%(—2a — §)
S/ I<—S<~— @& <— SY-a-0) =— @ ~— S(—2a — 26) <— 0.
5%(-9) = S%(—a — 26)
S(—20)

The nonzero entries of 3(S/I), denoted BO) are

B0 =180 =250 =2,

0 0 0
Bé,Q)a =1, Bé,o)ms = 455,2)5 =1,

(0) _ (0) _ (0) _
ﬁ3,2a+(5 - 2’ B3,a+26 - 2’54,204+26 =L

The first degree sequence is dy = (0, o, 2a, 2 + 6, 2 + 25). The non-zero entries of the

corresponding elimination matrix m(dy) are as follows:

1
o) = e+ 0)(a 1 20)
1
T(do)g 00 = o252
1

m(do)3 20+5 = 62(2c 4 0)(a +6)

We want to find the largest zg such that 5(0) — xom(dy) has entries > 0. So, we need to

find the largest xg such that

zo < 20t + 6036 + 40262
zo < 4a6?

zoda?6? + 6a° + 264

We have that 4026 < 2a* + 6038 + 4a26% and 4026% < 46262 + 608> + 264, so z9 = 426>

is the largest solution. So, we choose zy = 40262 as the coefficient for m(dpy). Let ﬁ(l) =
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B — 4026%m(dy). Then S has entries

5(1) _9_ 40262 B 2a(a + 30)

La ™ a?(a+6)(a+20)  (a+6)(a+25)’
(1 4042(52 o

220 = 1oz = O

40262 20(3ac+9)

B(l) =2 —
8,204 22a+0)(a+0d)  (2a+d)(a+d)

Our next degree sequence is d; = (0, ,  + 9,2 + 0, 20 + 29) and has a corresponding

elimination matrix 7(d;) with non-zero entries

1

md)1a = ad(a+ 6)(a+ 20)’
1
d = —
T )2ats = 5ot 002

1
W(d1)3,2a+6 T ad(a+6)(2a+0)

So, we need to find the largest x; such that

z1 < 20%5(a + 36) = 206 + 60262,
z1 < 4ad(a+6)? = 4035 + 8062 + 4ad®,

z1 < 2062 (3a + 6) = 6a%6% + 2a6°.

We see that 2038 + 60262 < 4038 + 80262 + 4a6® and 2035 + 60262 < 60262 + 2a6°, since

o < 6. So, we choose 1 = 2025 (o + 36) = 2036 + 60207 as the coefficient for m(d;). Now

let B = g1 — 202§(cv + 38)7(dy). Then 8P has entries

B =0
5(2) 4 2020(cc+ 30)  2(a® + ad + 267)
2040 ad(a+6)2 (o +6)2
26(3ac+ 9) 2025 (a + 36) 2(6 — )

52— - .
32040 7 20+ 0)(a+06) ad(a+0)(2a+6) (2a+9)
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The next degree sequence is do = (0,4, a + d, 2 + 9, 2 + 26), which has a corresponding

elimination matrix m(dy) with the following entries:

1
)15 = 502530 + 5)'
1
m(d2)g0ts = (a1 )2
1

m()s2046 = 552500 1 8)

We need to find the largest x2 such that the entries of B — xom(dsy) are greater than or

equal to 0. So, we need the largest xo such that

T9 < 40%5(2a + 6) = 806 + 40?62,
To < a?(20% + 208 + 46%) = 22t + 2076 + 40262,
and Ty < 4026(8 — a) = 4a%6% — 4a36.
Since a,d > 0, it follows that 4026 — 4038 < 808 + 4026% and 4026% — 4036 < 2a* +

2035 + 40262, So, we choose o = 4025(8 — o) = 4062 — 4036 as the coefficient for 7(dy).

Now, we let 8 = ) — 4a26(5 — a)w(dy), which has the following entries:

3) b«
Fis = 200+ 6’
ﬁ(3 . 204(06 + 35)
2,a+5 (Oé +5)2 5
3
ﬁi(’),2)a+6 =0

The next degree sequence is d3 = (0,4, a + d, @ + 29, 2 + 26), which has a corresponding

elimination matrix 7(ds) with entries

1
)15 = S T )20 £ 0)°
1
T(ds)g o v5 = ad(at o
1

)32 = O30 8) (o 1 20)
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So, we need to find the largest x3 such that 5(3) — x3m(d3) has entries that are all > 0.

Then we want the largest x3 such that

r3 < 60%5(a+ 6) = 6035 + 60262,
r3 < 20%5(a + 36) = 2036 + 60262,

r3 < 2a8(a 4 6) (o + 26) = 2035 + 6a26% + 4ad>.

Observe that 2038 + 6026 < 603 + 6a%6% and 2036 + 6026 < 2030 + 60262 + 4ad®.
So, we choose 3 = 2a25(a + 38) = 2036 + 60262 as the coefficient for 7(d3). Now let
BW = BB) — 2025(ar + 36)m(d3). Then S has entries

6o 2020(ac + 30) 40

4 _ _
Frs = 20+30 ad(a+6)2a+6) (a+8)(2a+d)’
4 2a(a + 39) _ 2a25(a + 30) B

Pross = (a+6)2 ad(a+48)2 "
g g 20%(@+3) _ 44
80420 = 7 5(a+ 0)(a+20)  (a+06)(a+20)

The final degree sequence is dy = (0,9,20, a + 26,2a + 20), which has corresponding
elimination matrix 7(d4) with entries

1

d =
"1 = St 5)2a+ )
1
Tr(d4)2725 = 40&2(52’
1

7T(d4)3’°‘+25 - a?(a+0)(a+28)
Notice that 4a%6%m(dy) = . So we are left with
BO = 402627 (0, 200, 200 + 6, 200 + 20)
+20%5(a + 38)m(0, o, o + 6, 2a + 6, 200 + 20)
+4025(8 — )7 (0,8, o + §, 2a + 6, 20 + 20)
+20%8 (o + 38)m(0, 6, o + 8, o + 28, 2c0 + 26)

+40%5%7(0, 8,26, a + 26,20 + 26). [
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Proposition 3.2.4. Let S = k[z,y,z,w] be a polynomial ring over a field k and let
I = (:L‘a,y‘;,z‘s,w‘s) be an ideal of S generated by a homogeneous reqular sequence. Let

a < 0. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

B(S/I) = 6a8*m(0,a,a+d,a+ 26, a+ 30)
+6a0°7(0, 5, a + 8, o + 26, a + 39)
+6a0°7(0, 8,26, a + 26, o + 30)

+6a637(0, 8, 26, 36, o + 36).

Proof. Let S = k[z,y, z,w] be a polynomial ring over a field k£ and let I = (z“, 0, 20, wl)
be an ideal of S generated by a homogeneous regular sequence. Let o < . We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:
S(—a) S3(—20) S(—a — 20)
S/ I<—S=~— @& <— ® -~ & ~— S(—a—3§)<—0.
S3(—6) S3(—a — 6) S(—36)

Then the Betti diagram of S/I, denoted ﬁ(o), has nonzero entries

0 0 0 0 0 0 0 0
5(()3 = 175% = l,ﬁig = 3755,2%5 = 3755,2)5 = 375§,;+25 =3, 5:’5,:35 = 175i,3+35 =1

We follow Algorithm 1.4.5 to find the Betti decomposition of /3 ), The first degree sequence
in the decomposition of B is given by dy = (0, a, a + 6, a4+ 29, a+ 35). Then the nonzero

entries of the first elimination matrix are given by m(dp):

1
m(do) o = 6ad?
02045 = 553 (0 1 9)
1

m(do)3 ar25 = 2530 1 20)"

We want to construct a new M) = 15} © —xom(do) by substracting a scalar multiple 2o € Z*
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of w(dy) from B so that the result has entries 0 or greater than 0 and that we eliminate
one of the nonzero entries from A?). This scalar will be the largest xg that satisfies the
following inequalities:
__to
, . Ofia53
; 263 g% +0) .
203(a+26) —

We see that 66 satisfies the above inequalities. Then /3 1) = I5; ©) —6a537r(d0) has nonzero

entries given by

Bra =
By =3
(1) _ 30
5276(“;35 a4+
225 3
5(1) _ 66
3,a+24 (a + 26)
1
5§ 3)5 =1

Following Algorithm 1.4.5, we have the degree sequence d; = (0,0, a + 8, + 26, o + 39)

and nonzero entries of the corresponding elimination matrix 7 (d;):

1
"1 = G5a + 8)@a 1+ 8)
1
T(d1)g aps = 200%(0 1 0)
1

d = :
5025 = a1 5)(a 1 2)

We find that the largest z; such that each entry of 3 = 81 — z17(dy) is greater than

or equal to 0 is 6ad°:
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I

— >0
S et d)atal) =
30 I
— >0
a+d  2a8%(a+d) —
60 . T >0
a+20 Pa+d)(at+25) —
Then the nonzero entries of 5(2) are given by
ﬁ@) _ 3a(a + 36)
ti (4 6)(a + 26)
2
e
52,25 =3 )
/8(2) _ 60
?vf;% (a0 + 0)(cx + 20)
2
ﬁ3,35 =1

Then the next degree sequence is dy = (0, 0,20,  + 2d, « + 39) and the nonzero entries of

the elimination matrix m(dg) are

1
215 = 50 T 8)(a 1 20)
1
)22 = 30m(a 1 5)
1

7T(d2)3’a+25 - ad(a+6)(a+26)

We find that 662 is the largest xo such that ﬂ(?’) = 5(2) — x907(d2) has entries that are

greater than or equal to zero. The nonzero entries of B(3) are:

5(3) 3o
1,6 (o 4 26)

/3(3) - 6
2,26 2(a+9)
3

B§,34+26 =0

3
51&,325 =1
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Then we have our final degree sequence ds = (0,6, a + 0,2 + 6,3 + §) and the nonzero

entries of the corresponding elimination matrix 7(ds):

1
)15 = 55570 1 25)

1
)25 = 5580 1 8)

1
m(d3)3 35 = 60d3"

Observe that 6ad°m(ds) = ). So we have

BO) = 60037 (0, a, a + 8, ¢ + 26, a0 + 36)
+6a0°7(0, 5, + 8, + 26, a + 39)
+6a:637(0, 8,26, a + 26, a + 30)

+6a637(0, 8,268,368, o + 36). O

Let S/I = k[z,y, z,w]/(z%, y~, zv,w‘s) such that a < v < 6. We attempt to construct a
general form for the Betti decomposition of S/I using a similar method as with Proposi-
tions 3.2.1, 3.2.2, 3.2.3, and 3.2.4, but we find that this strategy alone will not suffice. We
begin to find the general Betti decomposition of S/I in order to identify the problem. We

construct the resolution of S/I as in Remark 1.3.9:

S(—2a)
S%(—a) ® S(—2a —7)
& S%(—a — ) &
S/ I<-S< S(—y) <= & ~— S(—2a-9) <=—S(—2a—-—7-9)=<0,
® S%(—a —6) @
S(=6) o S*(—a—v—9)

S(=y—9)
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and we have the corresponding nonzero Betti diagram entries,

(0) _ (0) _ (0) _ (0) _
53,2014-'7 - 1’ B3,2a+§ - 17 53,a+'y+5 - 2’ /84,2a+'y+6 = 1.

Our first degree sequence is dy = (0, o, 2a, 2a+7, 2a+7+0). The corresponding elimination

matrix 7(dp) has nonzero entries

(do)y0 = .
T T 820+ ) (ot + )
1
m(do)g o0 = %027+
1
7T((1()):’),2a+'y = 75(04 T 7)(20{ T ’Y)'

We need to find the largest o such that g 0) _ xom(do) has entries that are greater than

or equal to 0. So, we need the largest zy such that

zo < 202 (o + ) (@ + v+ 0) = 2a* + 4a3y + 2035 + 2a%4% + 20270
zo < 20%y(y 4 6) = 20°4? + 20276
2o < yo(a 4+ ) (2a + ) = 20273 + 30725 + 434,
It is clear that 202 (a4 ) (o + 7+ 8) = 202(a® + 20y 4+ ad 4+ 7> 4+ 76) > 202 (v + v6) =

20%7(y+0) since o +2ay +ad +~% +748 > 4% +74. It remains to compare 2a2y(y46) and

8 (a+7)(2a47). We do this by subtracting v6(a+7)(2a+7) from 2a*(a+7)(a+vy+96):

20%y(y 4 6) — y0(a +7)(2a + ) = 2a°4% 4 2a%v5 — (2°76 + 3ay?5 + 30)
= 20292 + 20296 — 2% — 3ay26 — 36
= 20272 — 30726 — 736

= 72(2(12 — 3ad — 0).
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Since a < v < 4, it follows that 2a? < 2ad. So 202 < 3ad+~d. Therefore 202 —3ad —76 <
0. It follows that 2(2a% — 3ad — 4d) < 0, and so 2a%y(y + ) — vd(a + 7)(2a + ) < 0.
Thus 2027(y + 6) < y6(a + v)(2a + 7). So, we choose 2¢ = 20°v(y + &) as our coefficient

of w(dp). Let BV = 5O — 2a2y(y + §)m(dy). Then 1Y) has nonzero entries

(1) 2a(a+2v+0)

LT (aty)(a+y+9)
1
Boza =0
n Y(3ad 4+ v8 — 2a2)
2200 Sla ) (2a+ )

p

Our next degree sequence is d; = (0, o, + 7,2+ 7,2+ v+ §) and has a corresponding

elimination matrix m(d;) with nonzero entries

1
e = et @t 5)
1
Tzt = et )+ )
1

m(d1)s 207 = ad(a+v)2a+7)

Looking for the largest ;1 such that B(l) —x17(dy) has all entries that are greater than or

equal to 0, we need the largest x; such that

zo < 20%7(a + 2y +0)
2o < 2a7(a + 7)(a +90)

zo < ay(3ad 4+ v6 — 2a?).
Notice that

20%y(a+27+6) = ay(20® +4ay+2ad) < ay(20° +2ay+2a8 +276) = 2ay(a+7)(a+6),
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since 20y < 276. It remains to compare 2a%y(a + 2y + 6) and ay(3ad 4 76 — 2a2). We do

this by subtracting ay(3a:d + 78 — 202) from 202y (o + 27y + §):

202y (o 4 27 4 6) — ay(3ad + 6 — 202) = ay(2a? + dary + 2a8) — ay(3ad 4+ v — 202)
= ay(40® + day — ad — 76)
=403y + 40292 — o®y5 — ay?S
= da®y(a +7) — ayd(a+7)

= ay(da —)(a +7).

Let’s look at the roots of this equation. Since 0 < « < ~, the only way that this
expression will be 0 is when 4ac — § = 0. So, we must consider three cases: (1) 4o = 9, (2)
4o < 6, and (3) 4 > 6. As it is unclear how to proceed from here, we leave the remaining

cases as future work and state the current results.

Corollary 3.2.5. Let S = k[z1,...,x4] be a polynomial ring over a field k and let I =
(f1,..., fa) be an ideal of S generated by a homogeneous reqular sequence with deg(f;) = e;.
If d < 3, then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is completely

determined by the degrees eq, ..., eq. In particular, for
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d=1: B(S/I)=e1-7(0,e1)
d=2: [B(S/I)=-ejeq-m(0,e1,e1 + e2) + erez - (0, e2,e1 + €3)
d=3: Ife; <eg <es, then

B(S/I) = ejea(ea +e3)-m(0,e1,e1 + e2,e1 + €2 + €3)
+€1€2(63 — 61) '7T(0,62,61 + eg,e1 + €2 + 63)
+261€2(61 +e3 — 62) . 71'(07 e, e1 +es,e1+ex+ 63)
+erea(es —e1) - w(0,e3,e1 + e3,e1 + €2 + €3)
+6162(62 + 63) '71'(0, es, ez +es,er +es+ 63)
d=4: Ifei =ey=e3=ey, then

B(S/I) = 24e1*7(0, e1, 2e1, 3ey, 4e1)
If e1 = es = e3 < ey4, then

B(S/I) = 6613647r(0, e1,2e1,3e1,3e1 + e4)
+6613647r(0, e1,2e1,2e1 + ey, 3e1 + e4)
+6613e47r(0, e1,e1+ eq,2e1 + eq,3e1 + e4)
+6613e47r(0, eq,€1 + eq,2e1 + eq,3e1 + €4)

If e1 = es < e3 = ey, then

B(S/I) = 4e2ein(0,eq,2e1,2e; + e4,2e1 + 2e4)
—{—26%64(61 + 3e4)m(0, €1, €1 + €4,261 + e4,2e1 + 2e4)
—1—46%64(64 —e1)m(0, eq, €1 + e4,2e1 + €4, 2e1 + 2¢e4)
—1—26%64(61 + 3e4)(0, eq, €1 + €4, €1 + 2e4,2e1 + 2¢4)
+4e2e3m(0, eq, 2eq, €1 + 2e4, 2e1 + 2e4)

If e1 < eg = e3 = ey, then

B(S/I) = 6erein(0,e1,e1 + ey, e1 + 2e4, €1 + 3e4)
+661€iﬂ'(0, eq,€1 + eq,e1 + 2e4, €1 + 3ey)
+661627T(0, €4,2e4,e1 + 2e4, €1 + 3e4)
—I—Geleiw((), €4,2e4,3e4,€1 + 3eyq).

Proof. This follows from [6], Proposition 3.2.1, Proposition 3.2.2, Proposition 3.2.3, and

Proposition 3.2.4. O
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Further directions

There is no question that this new and exciting area of research still has much to be
discovered. In particular, we find that both of our main questions from Section 1.2 remain

open. We state these questions here for convenience:

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

0 A B C 0.

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

Question 1.2.2. Let S = k[z1,...,x4] be a polynomial ring over a field k and let I =
(f1,..., fa) be an ideal of S generated by a homogeneous reqular sequence with deg(f;) = e;.

What is the Betti decomposition of S/I in terms of the degrees e;?

In Section 2.1, we identify a class of Betti diagrams in which we can find the Betti
decomposition of the sum of two Betti diagrams by taking the sum of the Betti decom-
positions of the two Betti diagrams. This leads us to Proposition 2.2.4, which provides

an answer to Question 1.2.1 for modules with Betti diagrams that belong to the specific
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class of Betti diagrams from Section 2.1. However, it remains to find other classes of Betti
diagrams for which the Betti decomposition of the sum of Betti diagrams is the sum of the
Betti decompositions of Betti diagrams. These classes would allow us to make analogous
propositions to Proposition 2.2.4.

Another interesting direction is to consider the short exact sequence of modules, as
presented in Question 1.2.1, when B is not A@® C. This would require the use of Macaulay?2
[8] to examine different modules and their Betti decompositions.

In Section 3.2, we present the Betti decompositions of certain cases of complete intersec-
tions in codimension 4. It remains to consider the last four cases of complete intersections

in codimension 4:

(i) e1 = e3 < e3 < ey,
(i) e1 < ex =e3 < ey,
(iii) e1 < eg < ez = ey,
(iv) e1 < eg < ez < eq.

As we mentioned in Section 3.2, it is unclear how to proceed with the above cases. Another
strategy will need to be employed in order to tackle these cases, as well as cases of complete

intersections in higher codimension.
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