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Abstract

One of the common invariants of a graded module over a graded commutative ring is the
Betti number. For any graded minimal free resolution F . of a graded R-module, we have
corresponding Betti numbers that record information about the grading of F .. Using a
specific index, we can construct a Betti diagram with Betti numbers as entries. Inspired by
a set of conjectures of M. Boij and J. Söderberg, an algorithm was given by D. Eisenbud
and F. Schreyer allowing the decomposition of Betti diagrams into pure diagrams. In this
thesis, we explore the basic concepts of Boij-Söderberg theory, including the construction of
minimal free resolutions of graded R-modules, Betti diagrams, and Betti decomposition.
We investigate the relationship between the Betti decompositions of graded R-modules
that form a short exact sequence and find that there is a class of short exact sequences of
modules such that the Betti decomposition of the middle module is equivalent to the sum
of the Betti decompositions of the outer two modules. We also examine the decompositions
of Betti diagrams over a special kind of ring called a complete intersection, which furthers
the results of C. Gibbons, J. Jeffries, S. Mayes, C. Raicu, B. Stone, B. White (2012) [6]
to codimension 4.
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1
Introduction.

1.1 History and background

In 2008, M. Boij and J. Söderberg published an article [2] describing two conjectures

relating to the Betti diagram representations of graded free resolutions of Noetherian

modules. One of these conjectures, restated in this paper with Theorem 1.4.4, views Betti

diagrams as sitting inside some vector space, and as a result they can be written as linear

combinations of basis elements. In 2009, D. Eisenbud and F. Schreyer proved Theorem

1.4.4 using an algorithm that “decomposes” Betti diagrams into linear combinations of

basis elements. This algorithm is one of the main tools we employ in order to study the

Betti diagrams of Noetherian modules.

The study of Noetherian modules would not be possible without the groundbreaking

research of the German mathematician Emmy Noether in the 1920s. One of Noether’s

most important contributions to abstract algebra was her clever use of ascending (or

descending) chain conditions. Any object in abstract algebra satisfying these conditions is

now referred to as “Noetherian” in her honor. A module M is Noetherian if it satisfies the

ascending chain conditions on its submodules, or, equivalently, if every submodule of M
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is finitely generated. The following remark comes from the theory of Noetherian modules.

It is well known that this is the case.

Remark 1.1.1. 1 If M is a finitely generated module over R = k[x1, . . . , xn], then every

submodule N ⊆M is finitely generated. ♦

We will use this property of finitely generated modules when constructing the graded

minimal free resolution of a graded R module in Section 1.3.

1.2 Motivation and basic definitions.

The two main questions that we will explore in this paper are as follows.

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

0 // A // B // C // 0.

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

Question 1.2.2. Let S = k[x1, . . . , xd] be a polynomial ring over a field k and let I =

(f1, . . . , fd) be an ideal of S generated by a homogeneous regular sequence with deg(fi) = ei.

What is the Betti decomposition of S/I in terms of the degrees ei?

To fully understand these questions, we need some background material. We will discuss

rings, ideals, modules, short exact sequences, and standard grading in Section 1.2. In

Section 1.3, we will introduce generating sets and free modules, which will lead to the

construction of minimal graded free resolutions. In Section 1.4, we will explore Betti

diagrams, each of which is unique to a given minimal graded free resolution. We will

revisit Question 1.2.1 in Chapter 2 and Question 1.2.2 in Chapter 3 once we have all the

necessary tools.

1See any introduction to commutative algebra text, such as [1], [4], [11], [12]
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Definition 1.2.3. A ring is a set R with binary operators (+, ·) such that R is an abelian

group under addition and has the following properties:

1. x · y ∈ R,

2. (x · y) · z = x · (y · z),

3. x · (y + z) = x · y + x · z,

for all x, y, z ∈ R. A ring R is commutative if x · y = y · x for all x, y ∈ R. A ring R has a

multiplicative identity 1R ∈ R if 1R · x = x · 1R = x for all x ∈ R. 4

In this paper, we will assume all rings are commutative and include a multiplicative

identity.

Example 1.2.4. The sets Z,R,Q, and C are all commutative rings with multiplicative

identity. ♦

Example 1.2.5. Let k be a field. Define R = k[x] as the set of polynomials of the form∑
i≥0

cix
i such that ci ∈ k. We have that 3 − x, 7x3, 2x + x2 ∈ R. Since k is a field, then

the sum of any two polynomials in R will still be in one variable with coefficients in k.

Observe that (2x+ x2) + (3− x) = 3 + x+ x2 ∈ R and (3− x) + (7x3) = 3− x+ 7x3 ∈ R.

Using this technique, it is easy to show that R is closed. Thus R is closed under addition.

Note that each element r(x) ∈ R has an additive inverse, given by −r(x). Since addition

of polynomials is commutative, it follows that R is an abelian group under addition. We

will go through the three properties of a ring from Definition 1.2.3 to show that R is a
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ring. Let r(x), s(x), t(x) ∈ R. Then we can write

r(x) =

n∑
i=0

rix
i,

s(x) =

m∑
j=0

sjx
j ,

t(x) =

l∑
k=0

tkx
k,

for ri, sj , tk ∈ k. Then we have that

r(x) · s(x) =

(
n∑
i=0

rix
i

) m∑
j=0

sjx
j


=

n∑
i=0

m∑
j=0

risjx
i+j .

Since ri, sj ∈ k and k is a field, then risj ∈ k for all 0 ≤ i ≤ n, 0 ≤ j ≤ m. By our

definition of R, it follows that r(x) ·s(x) ∈ R. Consider 3−x, 7x3 ∈ k[x]. Multiplying these

two polynomials together, we get (3 − x)(7x3) = 21x3 − 7x4. Since 21, 7 ∈ k, it follows

that 21x3 − 7x4 ∈ k[x].

We also have that

(r(x) · s(x)) · t(x) =

( n∑
i=0

rix
i

)
·

 m∑
j=0

sjx
j

 ·( l∑
k=0

tkx
k

)

=

 n∑
i=0

m∑
j=0

risjx
i+j

 ·( l∑
k=0

tkx
k

)

=
n∑
i=0

m∑
j=0

l∑
k=0

risjtkx
i+j+k

=

(
n∑
i=0

rix
i

)
·

 m∑
j=0

l∑
k=0

sjtkx
j+k


= r(x) · (s(x) · t(x)).



1. INTRODUCTION. 9

Consider f(x) = 3− x, g(x) = 7x3, h(x) = 2x+ x2 ∈ k[x]. We find that

(f(x) · g(x)) · h(x) = ((3− x)7x3)(2x+ x2)

= (21x3 − 7x4)(2x+ x2)

= 42x4 + 7x5 − 7x6,

and that

f(x) · (g(x) · h(x)) = (3− x)(7x3(2x+ x2))

= (3− x)(14x4 + 7x5)

= 42x4 + 7x5 − 7x6.

So (f(x) · g(x)) · h(x) = f(x) · (g(x) · h(x)).

We define sj = 0 for j > m. For the final property in Definition 1.2.3, we have

r(x) · (s(x) + t(x)) =

(
n∑
i=0

rix
i

)
·

 m∑
j=0

sjx
j

+

(
l∑

k=0

tkx
k

)
=

(
n∑
i=0

rix
i

)
·

max (m,l)∑
j=0

(sj + tj)x
j


=

n∑
i=0

max (m,l)∑
j=0

ri(sj + tj)x
i+j

=
n∑
i=0

max (m,l)∑
j=0

(risj + ritj)x
i+j

=

 n∑
i=0

m∑
j=0

risjx
i+j

+

 n∑
i=0

l∑
j=0

ritjx
i+j


= r(x) · s(x) + r(x) · t(x).

Again, consider the three polynomials

f(x) = 3− x,

g(x) = 7x3,

h(x) = 2x+ x2,
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in k[x]. Notice that

f(x) · (g(x) + h(x)) = (3− x)(7x3 + 2x+ x2) = 20x3 + 6x+ x2 − 7x4

and

f(x) · g(x) + f(x) · h(x) = (3− x)7x3 + (3− x)(2x+ x2) = 20x3 − 7x4 + 6x+ x2.

It follows that f(x) · (g(x) + h(x)) = f(x) · g(x) + f(x) · h(x).

Observe that

r(x) · s(x) =
n∑
i=0

m∑
j=0

rjsjx
i+j

=

m∑
j=0

n∑
i=0

sjrix
j+i

= s(x) · r(x),

so R is commutative.

Notice that 1 ·r(x) = r(x) ·1 = r(x) for all r(x) ∈ R. Thus we have shown that R = k[x]

is a commutative ring with a multiplicative identity. ♦

Proposition 1.2.6. Let R be a commutative ring. Then

R[x] :=

{
n∑
i=0

rix
i | ri ∈ R

}

is a ring.

Proof. Let R be a ring. Consider the set defined by

R[x] :=

{
n∑
i=0

rix
i | ri ∈ R

}
.
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Let r, s, t ∈ R[x]. Then

r =
n∑
i=0

rix
i,

s =
m∑
i=0

six
i,

t =
l∑

i=0

tix
i,

for ri, si, ti ∈ R.. Observe that we can employ the same argument as in Example 1.2.5 to

show that

r · s ∈ R,

(r · s) · t = r · (s · t),

r · (s+ t) = r · s+ r · t,

r · s = s · r,

and 1 · r = r.

We define

R[x1, . . . , xn] :=

∑
vi≥0

rvx
v | v ∈ Zn


as the set of polynomials over R in n variables, where x = [x1, . . . , xn], v = [v1, . . . , vn] are

vectors and xv = xv11 x
v2
2 · · ·x

vn
n .

Proposition 1.2.7. If R is a commutative ring then R[x1, . . . , xn] is a commutative ring.

Proof. We will prove this by induction on n. Let n = 1. Then R[x1] is a ring by Propo-

sition 1.2.6. Assume that R[x1, . . . , xn−1] is a ring for n > 1. We want to show that

R[x1, . . . , xn] is a ring. By Proposition 1.2.6, we have that R[x1, . . . , xn−1][xn] is a ring. It

suffices to show that R[x1, . . . , xn−1][xn] = R[x1, . . . , xn].

Let s ∈ R[x1, . . . , xn−1][xn]. Then s =

t∑
i=0

six
i
n for si ∈ R[x1, . . . , xn−1]. Note that if r ∈

R[x1, . . . , xn−1] then r =
∑
vi≥0

rvx
v1
1 x

v2
2 · · ·x

vn−1

n−1 for rv ∈ R and for all v = (v1, . . . , vn−1) ∈
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Zn−1. It follows that

s =
t∑
i=0

∑
vj≥0

rvx
v1
1 x

v2
2 · · ·x

vn−1

n−1

xin, (1.2.1)

for rv ∈ R and for all v ∈ Zn−1. Notice that the ith summand of (1.2.1) is the sum∑
vj≥0

rvx
v1
1 x

v2
2 · · ·x

vn−1

n−1 x
i
n, for all v ∈ Zn−1. Or, equivalently, the ith summand of (1.2.1) is

given by
∑
wj≥0

rwx
w1
1 xw2

2 · · ·x
wn−1

n−1 x
wn
n for all w ∈ Zn−1 × {i}. It follows that

s =
∑
wj≥0

rwx
w1
1 xw2

2 · · ·x
wn−1

n−1 x
wn
n

for all w ∈ Zn−1×Z = Zn. Therefore s ∈ R[x1, . . . , xn]. It follows thatR[x1, . . . , xn−1][xn] ⊆

R[x1, . . . , xn].

Now let s ∈ R[x1, . . . , xn]. Then

s =
∑
wj≥0

rwx
w1
1 xw2

2 · · ·x
wn−1

n−1 x
wn
n

for all w ∈ Zn and for rw ∈ R. It follows that

s =

t∑
i

∑
vj≥0

rvx
v1
1 x

v2
2 · · ·x

vn−1

n−1

xin

for some t ∈ Z and for all v ∈ Zn−1. Therefore s ∈ R[x1, . . . , xn−1][xn]. It follows that

R[x1, . . . , xn] ⊆ R[x1, . . . , xn−1][xn].

As a direct result of Proposition 1.2.7, we have Corollary 1.2.8.

Corollary 1.2.8. k[x1, . . . , xn] is a ring.

Recall that a group G can have a special kind of subgroup N called a “normal subgroup”.

Similarly, a ring R can have a special subset I, called an “ideal”.

Definition 1.2.9. Let R be a ring, let I ⊆ R be a subset and let r ∈ R. Then I is an

ideal of R if
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1. I is an additive subgroup of R and I is closed under multiplication, and

2. for all a ∈ I, r ∈ R, we have that ar, ra ∈ I.

4

Consider the following example.

Example 1.2.10. Consider the polynomial ring R = k[x, y]. Then I = (x, y2) is a subset

of R, where I = {r ∈ R | r = sx + ty2 for all s, t ∈ R}, i.e. I is the set of polynomials

generated by x and y2. So, since x− 3y, 7 + xy ∈ k[x, y], then

(x− 3y)x+ (7 + xy)y2 = x2 − 3xy + 7y2 + xy3 ∈ I ⊆ k[x, y].

Observe that I is an additive subgroup of R and that I is closed under multiplication. By

definition, I satisfies property (2) from Definition 1.2.9. Thus I is an ideal in R. ♦

Recall that a group G modulo a normal subgroup N is a quotient group G/N . Similarly,

we have that the set R/I, given by a ring R modulo an ideal I, is a “quotient ring” R/I.

Proposition 1.2.11. Let R be a ring and let I be an ideal of R. Then the additive quotient

group R/I is a ring under the binary operations:

(r + I) + (s+ I) = (r + s) + I and (r + I) · (s+ I) = (rs) + I

for all r, s ∈ R.

Proof. To prove that R/I is a ring, we need to show that R/I is an abelian group under

addition and that it satisfies the properties stated in Definition 1.2.3. Since R is a ring

and I is an ideal of R, it follows by definition that R is an additive abelian group and that

I is an additive subgroup of R. As subgroups of abelian groups are normal, we have that

R/I is an abelian quotient group under addition. Let x+ I, y + I, z + I ∈ R/I be cosets,
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denoted x, y, z, respectively. We define the multiplication of x and y to be

x · y = (x+ I)(y + I) := x · y + I = xy.2

Since x, y ∈ R, it follows that x · y ∈ R. So x · y+ I = xy ∈ R/I. Thus R/I is closed under

multiplication. Using our definition of multiplication of cosets, it follows that (x · y) · z =

xy · z = (xy + I)(z + I) = xy · z + I = x · yz + I = x · yz, so we have associativity in R/I.

We also have

x(y + z) = (x+ I) · ((y + I) + (z + I))

= (x+ I)((y + z) + I)

= x(y + z) + I

= (xy + xz) + I

= xy + xz.

Hence R/I is distributive over addition. Thus all of the properties in Definition 1.2.3 are

satisfied, so R/I is a ring.

We say that R/I is the quotient ring of R by I.

Example 1.2.12. Let R = k[x, y] be a ring and I = (x, y2) be an ideal in R. Then R

modulo its ideal I is the quotient ring R/I =
k[x, y]

(x, y2)
. Recall from Example 1.2.10 that

I ⊆ R is made up of ring elements that can each be written as a = s(x, y)x+ t(x, y)y2 ∈ I

for some s(x, y), t(x, y) ∈ R. So, elements of R/I are cosets of the form r + I, denoted r,

for r ∈ R. For example, the cosets 2y = 2y + I, 3− xy = (3 − xy) + I are in R/I. Using

2See p. 242 in [3] for a proof that this operation is well-defined.
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the definitions for addition and multiplication from Proposition 1.2.11, we have that

2y + 3− xy = 2y + I + (3− xy) + I

= (2y + 3− xy) + I ∈ R/I,

and

2y · 3− xy = (2y + I)(3− xy + I)

= 2y(3− xy) + I

= (6y − 2xy2) + I

= 6y − 2xy2.

♦

Recall that R = k[x, y] is the set of polynomials of the form

n∑
i=0

cix
aiybi such that

ai, bi, n ∈ Z ≥ 0, ci ∈ k. Observe that for any polynomial r ∈ R, we can arrange the terms

of r in order of degree. Consider r = 3x2 + 4xy+ 3− y3. Note that deg(3x2) = deg(4xy) =

2,deg(3) = 0, and deg(−y3) = 3. Let R2 ⊆ R be the subset of R such that s2 ∈ R2

if and only if deg(s2) = 2 for all s2 ∈ R. Then 3x2, 4xy, 3x2 + 4xy ∈ R2. Similarly, let

R3 = {s3 ∈ R | deg(s3) = 3} and let R0 = {s0 ∈ R | deg(s0) = 0}. Note that R0 = k. It

follows that 3 ∈ R0 and −y3 ∈ R3. We can relate r to R0, R2, and R3 using direct sums.

Definition 1.2.13. Let A,B be sets such that A ∩B = ∅. Then we define

A⊕B := A+B

to be the direct sum of A and B. 4

Observe that every s ∈ R0 ⊕ R2 ⊕ R3 can be written as s = s0 + s2 + s3 for some

s0 ∈ R0, s2 ∈ R2, s3 ∈ R3.
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We say F〈r1, . . . , rn〉 = {c1r1 +c2r2 + . . .+cnrn | ci ∈ F} is the vector space is the vector

space over the field F spanned by r1, . . . , rn. Let I, J be sets. We define the multiplication

of these sets as

IJ := {ij | i ∈ I, j ∈ J}. (1.2.2)

Note that deg(s2s3) = 5 for some s2 ∈ R2, s3 ∈ R3 and R2, R3 are as previously defined.

If we define R5 = {s5 ∈ R | deg(s5) = 5}, then s2s3 ∈ R5. It follows that R2R3 ⊆ R5. By

Definition 1.2.14, we find that R = k[x, y] is standard graded.

Definition 1.2.14. Let R be a ring. R is standard graded if

1. R =
⊕
i≥0

Ri, where each Ri is an abelian group over addition and R0 is a field,

2. RiRj ⊆ Ri+j ,

3. R is “generated in degree 1,” i.e. R = R0[R1] = R0[x1, . . . , xn] such that R1 =

R0〈x1, . . . , xn〉.

4

We say that Ri is the ith graded piece of R. Further, if r ∈ Ri, we say that r is a

homogeneous element of degree i. Note that each Ri is generated by elements of degree i.

Consider the following examples.

Example 1.2.15. Let R = k[x, y] be the polynomial ring in two variables over the field

k. Then property 1.2.14(1) is satisfied because

R = k ⊕ k〈x, y〉 ⊕ k〈x2, xy, y2〉 ⊕ . . . .

We have that k〈x, y〉 = {a1x+a2y | ai ∈ k} and k〈x2, xy, y2〉 = {b1x2+b2xy+b3y
2 | bi ∈ k}.

It is a consequence of (1.2.2) that

k〈x, y〉k〈x2, xy, y2〉 = {rs | r ∈ k〈x, y〉, s ∈ k〈x2, xy, y2〉.
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So, (5x+ y)(7x2 − 3xy) ∈ k〈x, y〉k〈x2, xy, y2〉. But we also have that

(5x+ y)(7x2 − 3xy) = 35x3 − x2y − 3xy2 ∈ k〈x3, x2y, xy2, y3〉.

From our definitions of k〈x, y〉 and k〈x2, xy, y2〉, it follows that

k〈x, y〉k〈x2, xy, y2〉 = {(a1x+ a2y)(b1x
2 + b2xy + b3y

2) | ai, bi ∈ k}.

Equivalently, we have

k〈x, y〉k〈x2, xy, y2〉 = {a1b1x
3 + (a1b2 + a2b1)x2y + (a1b3 + a2b2)xy2 + a2b3y

3 | ai, bi ∈ k}.

Since k is a field, we have that a1b1, a1b2 + a2b1, a1b3 + a2b2, a2b3 ∈ k. So we can write

k〈x, y〉k〈x2, xy, y2〉 ⊆ {c1x
3 + c2x

2y + c3xy
2 + cy3 | ci ∈ k},

which is, by definition, equivalent to k〈x3, x2y, xy2, y3〉. Thus

k〈x, y〉k〈x2, xy, y2〉 ⊆ k〈x, y〉k〈x2, xy, y2〉.

Using a similar argument for any two graded pieces of R, we find that RiRj is contained

in the abelian group with elements of degree i+ j, so property 1.2.14(2) is satisfied.

Since R0 = k, it follows that R = R0[x, y]. So the final property 1.2.14(3) is also

satisfied. ♦

One of the most important algebraic structures is the module. Modules are similar to

vector spaces from linear algebra, but modules can be over any ring, not just a field. As

we mention in Example 1.2.17, any module over a field k is a vector space over k.

Definition 1.2.16. Let R be a ring. An R-module is a set M together with

1. a binary operation + on M under which M is an abelian group, and

2. an action of R on M : R×M −→M , denoted rm for all r ∈ R, m ∈M . This action

satisfies
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(a) (r + s)m = rm+ sm for all r, s ∈ R,m ∈M,

(b) (rs)m = r(sm) for all r, s ∈ R,m ∈M,

(c) r(m+ n) = rm+ rn r ∈ R,m, n ∈M, and

(d) 1m = m for all m ∈M, if R has a 1.

4

Example 1.2.17. Let F be a field and let M be an F-module. We observe that M satisfies

all of the properties of a vector space of F. Then M is a vector space over F.

Example 1.2.18. All abelian groups are Z-modules. Let R = Z and let G be any abelian

group under some binary operation, +. Then we can define an action of R = Z on G that

satisfies the statements in the previous definition. For any n ∈ Z and g ∈ G, we define

this action as follows:

ng =


g + g + · · ·+ g (n times) if n > 0
0 if n = 0
−g − g − · · · − g (−n times) if n < 0

.

This action of Z on G makes G into a Z-module. ♦

Example 1.2.19. Let R = F be a field. Let M = F [x] be the polynomial ring with one

variable over F . Then M is an abelian group under addition. Observe that this is a vector

space by Example 1.2.17, so the above properties are satisfied. So M is an R-module. ♦

Now, consider a more complicated example.

Example 1.2.20. Let k be a field and let R = k[x, y] be the polynomial ring with two

variables over k. Let M =
k[x, y]

(x, y2)
. Recall from Example 1.2.10 that (x, y2) is an ideal of

k[x, y]. We want to show that M is a module over R. Since M is a ring by Example 1.2.12,

we have that M is an abelian group under addition. We define m := m+ (x, y2) for some
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m ∈M . Observing the action of R on M , we see that r ·m takes m ∈M to rm ∈M for

all r ∈ R,m ∈M . We also have the following:

1. (r + s)m = rm+ sm for all r, s ∈ R,m ∈M ,

2. (rs)m = r(sm) for all r, s ∈ R,m ∈M, and

3. r(m+ n) = rm+ rn for all r ∈ R,m, n ∈M.

Thus by Definition 1.2.16 M is a module. ♦

Recall from Definition 1.2.14 that for some graded ring R, Ri ⊆ R is the ith graded

piece of R, meaning that every r ∈ Ri is homogeneous of degree i. Similarly, a graded

module M has the subset Mi ⊆M that is the ith graded piece of M .

Definition 1.2.21. Let R be a ring and let M =
⊕
i∈Z

Mi be an R-module. If RiMj ⊆Mi+j ,

then M is a graded module. 4

Example 1.2.22. Let k be a field and let R = k[x, y]. Let M = (x, y2) be an R-module.

Observe that M contains elements of different degree. We can think of M as the direct

sum of sets, each containing elements of a different degree:

M = (x, y2) = k〈x〉 ⊕ k〈x2, y2〉 ⊕ k〈x3, xy2〉 ⊕ k〈x4, x2y2, y4〉 ⊕ · · · .

Let m ∈ RiMj . Then m = zw for some z ∈ Ri and w ∈Mj . So deg(z) = i and deg(w) = j.

It follows that deg(m) = i+ j. Therefore RiMj ⊆ Mi+j . It follows from Definition 1.2.21

that M is a graded module. ♦

Definition 1.2.23 ([3]). Let R be a ring. Let A,B be R-modules. A map f : A −→ B is

an R-module homomorphism if

1. f(rx) = rf(x) for all x ∈ A, r ∈ R,

2. f(x+ y) = f(x) + f(y) for all x, y ∈ A.
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An R-module homomorphism is also an R-module isomorphism if it is both injective and

surjective. Two modules M and N are isomorphic, denoted M ' N if there is some

R-module isomorphism φ : M −→ N . 4

When we have an R-module homomorphism from a graded R-module to another graded

R-module, the homomorphism may or may not be graded, itself.

Definition 1.2.24 ([10]). Let R be a graded ring and let M,N be graded R-modules. Let

f : M −→ N be an R-module homomorphism. Then f is graded of degree d if f(Mn) ⊆ Nn+d

for all n. 4

Example 1.2.25. Let R = k. Consider the homomorphism

φ : k[x] −→ k[x]

r 7→ r · x.

Notice that for r ∈ k[x], a ∈ k, we have

φ(ar) = arx = aφ(r)

and φ(r + s) = (r + s)x = rx+ sx = φ(r) + φ(s).

Thus φ is an R-module homomorphism.

Let s ∈ φ(k〈x〉). Then s = (ax) · x for some a ∈ k. So r = ax2 ∈ k〈x2〉. Thus φ(k〈x〉) ⊆

k〈x2〉. Observe that φ(k〈xi〉) ⊆ k〈xi+1〉 for all i ≥ 1. Therefore φ is graded of degree 1. ♦

We can use “twists” to keep track of the degree shifts of graded R-module homomor-

phisms.

Definition 1.2.26. Let S =
⊕
i≥0

Si be a standard graded ring. Then S(n) is called the

twist of S by n and is defined by S(n)i := Si+n. 4

Example 1.2.27. Consider the polynomial ring S = k[x, y]. Recall from Example 1.2.15

that this ring is standard graded, so we can think of S as the direct sum of vector spaces,
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each of a different degree:

S := k[x, y] = k ⊕ k〈x, y〉 ⊕ k〈x2, xy, y2〉 ⊕ · · · .

Note that we can multiply any of the subspaces by a variable and land in a different

subspace. For example, multiplying S1 = k〈x, y〉 by xy moves everything in k〈x, y〉 to

something in S3 = k〈x3, xy2, x2y, y3〉. We can keep track of these shifts with the twists.

That is, for the homomorphism S
·xy−−−→ S, we take elements of degree i to elements of

degree i+ 2. We would like to have a map that takes degree i elements to degree i (such

a map is called homogeneous). To do this, we will twist the degrees of the source of the

map in order to preserve the degrees, i.e. S(−2)
·xy−−−→ S. So, twisting S1 = k〈x, y〉 by 2

gives S(−2)3 = S3−2 = S1 = k〈x, y〉. ♦

Another important structure is the short exact sequence.

Definition 1.2.28. Let R be a ring. A short exact sequence is a sequence of two R-module

homorphisms f, g between three R-modules A,B,C:

0 // A
f // B

g // C // 0

such that f is one-to-one, g is onto, and im(f) = ker(g). 4

Example 1.2.29. Consider the sequence of Z-modules:

0 // 2Z f // Z g // Z/2Z // 0.

Here f is the inclusion map and g takes 1 to 1. Observe that f is a one-to-one map

and g is onto. Also note that im(f) = 2Z is all of the even integers, all of which g then

takes to 0 in Z/2Z. So ker(g) = 2Z. Since f is one-to-one and g is onto, it follows that

im(f) = ker(g). ♦

We will use short exact sequences to construct “resolutions” in Section 1.3.
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1.3 Generating sets, free modules, and graded minimal free
resolutions

The graded minimal free resolution of a finitely generated R-module is one of the main

structures that we will be examining in each of the following sections of this paper. In this

section, we will first state the definitions and theorems that are necessary for constructing

a graded minimal free resolution. Then we will use these definitions and theorems to

describe the construction of a graded minimal free resolution.

Definition 1.3.1. Let R be a ring. Let M = Rm1+Rm2+. . .+Rml be an R-module such

that deg(mi) = di for all 1 ≤ i ≤ l. Then the set m = {m1,m2, . . . ,ml} is a homogeneous

generating set of M . If l is finite, then M is finitely generated. 4

Theorem/Definition 1.3.2 ([12]). Let M be a finitely generated graded module over a

polynomial ring R = k[x1, . . . , xn]. Let m1, . . . ,mn ∈ M be a homogeneous generating

set of M and define m = (x1, . . . , xn). We say that m1, . . . ,mt is a minimal generating

set of M if m1,m2, . . . ,mt ∈M/mM is a k-basis of the vector space M/mM . Notice that

R/m ' k.

Remark 1.3.3. We want to show that M/mM is a vector space over k ' R/m . Recall

from Example 1.2.17 that any module over a field is a also a vector space over that field.

So, it suffices to show that M/mM is a module over k. Observe that mM is, indeed, an ideal

of M by Definition 1.2.9. It follows that M/mM is an abelian group under +. It remains

to define an action of k on M/mM satisfying the properties in Definition 1.2.16(2). Let

φ : k ×M/mM −→M/mM be a map defined by φ(a,m) = am. We find that

(a+ b)m = (a+ b)(m+ mM) = a(m+ mM) + b(m+ mM) = (am+ mM) + (bm+ mM)

= am+ bm,

(ab)m = ab(m+ mM) = a(bm+ mM) = abm,
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and

a(m+ n) = a(m+ mM + n+ mM) = a(m+ mM) + a(n+ mM)

= (am+ mM) + (an+ mM) = am+ an.

Definition 1.3.4 ([3]). Let R be a ring. An R-module F is said to be free on the subset A

of F if for every nonzero element x of F , there exist unique nonzero elements r1, r2, . . . , rn

of R and unique a1, a2, . . . , an in A such that x = r1a1 + r2a2 + · · · + rnan, for some

n ∈ Z+. 4

Theorem 1.3.5 ([9]). Let R be a graded ring and let M be a finitely generated graded

R-module. Then M is the homomorphic image of a graded free R-module. In other words,

there exists a graded free R-module F and a surjective graded R-module homomorphism,

π : F =

t⊕
i=1

R(ni) −→M = Rm1 + · · ·+Rmt.

Proof. Let M = Rm1 +Rm2 + · · ·+Rmt be a finitely generated graded R-module such

that deg(mi) = di. Let F =
t⊕
i=1

R(−di) be a graded free R-module. Consider the map

φ : F −→M,

(r1, r2, · · · , rt) 7→ r1m1 + r2m2 + · · ·+ rtmt.

We want to show that φ is a graded R-module homomorphism and that φ is surjective.

Let (x1, . . . , xt), (y1, . . . , yt) ∈ F and let s ∈ R. Then

φ(x1, x2, . . . , xt) = x1m1 + x2m2 + · · ·+ xtmt,

and

φ(y1, y2, . . . , yt) = y1m1 + y2m2 + · · ·+ ytmt.
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We have that

φ(s(x1, x2, . . . , xt)) = φ((sx1, sx2, . . . , sxt))

= sx1m1 + sx2m2 + · · ·+ sxtmt

= s(x1m1 + x2m2 + · · ·+ xtmt)

= sφ(x1, x2, . . . , xt).

We also have that

φ(r1, . . . , rt) + φ(s1, . . . , st) = r1m1 + · · ·+ rtmt + s1m1 + · · ·+ stmt

= (r1 + s1)m1 + · · ·+ (rt + st)mt

= φ(r1 + s1, r2 + s2, . . . , rt + st)

= φ((r1, . . . , rt) + (s1, . . . , st)).

Thus φ is an R-module homomorphism by Definition 1.2.23.

Now we need to check that φ is graded. Consider the nth graded piece of F , given by

Fn =

t⊕
i=1

R(−di)n. Let (s1, . . . , st) ∈ Fn such that deg(si) = n − di for all 1 ≤ i ≤ n.

Then φ(s1, . . . , st) = s1m1 + · · · + stmt, where deg(mi) = di for all 1 ≤ i ≤ n. So, for

the ith summand in s1m1 + · · · + stmt, it follows that deg(simi) = n − di + di = n.

Therefore deg(s1m1 + · · · + stmt) = n. It follows that φ(s1, . . . , st) ∈ Mn. Thus we have

that φ(Fn) ⊆Mn. It follows from Definition 1.2.24 that φ is graded of degree 0.

It remains to show that φ is surjective. Let g ∈M . Then g =
t∑
i=1

aimi for some ai ∈ R.

From the definition of φ, we have that φ(0, . . . , 0, ai, 0, . . . , 0) = aimi, where ai is in the

ith place in the t-tuple and the rest of the entries are 0. Then

g = φ(a1, 0, . . . , 0) + φ(0, a2, . . . , 0) + φ(0, 0, a3, . . . , 0) + · · ·+ φ(0, . . . , 0, at),
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where each t-tuple has ai in the ith place and zeros in the remaining entries. Since we have

already shown that φ is an R-module homomorphism, it follows that

g = φ((a1, 0, . . . , 0) + (0, a2, . . . , 0) + (0, 0, a3, . . . , 0) + · · ·+ (0, . . . , 0, at))

= φ(a1, a2, . . . , at).

Thus we have that φ is surjective.

Proposition 1.3.6. Let R be a ring. Then M is a cyclic R-module if and only if there is

an ideal I ⊆ R such that M ' R/I.

Proof. First we will prove that if M ' R/I then M is a cyclic R-module. Suppose that

M ' R/I for some ideal I ⊆ R. Then the map ρ : R/I −→ M is an isomorphism. Let

ρ(1) = n for some n ∈M . We want to show that M = R ·n. It suffices to show that for all

m ∈M we have that m = r · n. Let m ∈M . Since ρ is an isomorphism, then ρ is onto. It

follows that there is some r ∈ R/I such that ρ(r) = m. Then since ρ is a homomorphism,

we have that ρ(r) = ρ(r · 1) = rρ(1) = r · n.

Next we will prove that if M is cyclic then M ' R/I for some ideal I ⊆ R. Suppose that

M is a cyclic R-module. Then M = R · n for some n ∈M . We want to show that there is

some ideal I ⊆ R such that M ' R/I. Using Theorem 1.3.5, we have the surjection π : R

−→M defined by π(r) = r · n for some r ∈ R, n ∈M . Consider the short exact sequence,

0 // K // R
π //M // 0,

where K = ker(π) = {r ∈ R | r · n = 0}. It follows from the First Isomorphism Theorem

of modules [3, Theorem 10.2.4(1)] that M ' R/K.

Definition 1.3.7. Let M be a graded R-module. A graded free resolution F . of M is an

exact sequence of graded R-modules and graded R-module homomorphisms

F . : 0 Moo F0
π0oo F1

ρ0oo F2
ρ1oo · · · .oo
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4

Theorem 1.3.8 ([4, Theorem 1.13 (Hilbert Syzygy Theorem)]). If R = k[x1, . . . , xr], then

every finitely generated graded R-module has a finite graded free resolution of length ≤ r,

by finitely generated free modules.

We construct the unique graded minimal free resolution of M using free modules and

minimal generating sets.

Remark 1.3.9. Let R = k[x1, . . . , xn] and let M be a finitely generated graded R-module.

The unique graded minimal free resolution of M is constructed using minimal generating

sets. Let {m1, . . . ,mt} be a minimal generating set of M . Then it follows from Definition

1.3.1 that M = Rm1 +Rm2 + · · ·+Rmt, where deg(mi) = di for all 1 ≤ i ≤ t. By Theorem

1.3.5, we have the surjective graded R-module homomorphism

π0 : F0 =
t⊕
i=1

R(di) −→M

defined by π0(r1, r2, . . . , rt) = r1m1 + r2m2 + · · · + rtmt. Let K0 = ker(π0). Since M is

finitely generated, we note that F0 is also finitely generated, by construction. Consider the

short exact sequence

0 // K0
φ0 // F0

π0 //M // 0. (1.3.1)

It follows that K0 = im(φ0) ⊆ F0. Since F0 is finitely generated, it follows from Remark

1.1.1 that K0 is finitely generated. Let {s1, . . . , sl} be a minimal generating set of K0

such that deg(si) = ei. Then by Theorem 1.3.5 we have the surjective graded R-module

homomorphism

π1 : F1 =

l⊕
i=1

R(ei) −→ K0.

Let σ1 : F1 −→ F0 be the map defined by σ1(f) = φ0(π1(f)). Note that F1 is finitely

generated by construction. Then we have
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0 Moo F0
π0oo F1.

σ0oo
π1

||
K0

φ0bb

||
0 0

cc

Let K1 = ker(π1). Then we have the short exact sequence

0 // K1
φ1 // F1

π1 // K0
// 0.

It follows that K1 ⊆ F1. Since F1 is finitely generated, it follows from Remark 1.1.1 that K1

is finitely generated. Then by 1.3.5 there is a surjective graded R-module homomorphism

π2 : F2 −→ K1. Let σ1 : F2 −→ F1 be the map defined by σ1(f) = φ1(π2(f)). Then we have

0 Moo F0
π0oo F1

σ0oo F2.
σ1oo

π2

||
K1

φ1bb

||
0 0

cc

Let K2 = ker(π2). We can continue in this manner until we are left with ker(πr) = 0 for

some 1 ≤ r ≤ n (given by Theorem 1.3.8). The result is the graded minimal free resolution

of M :

0 Moo F0
σ0oo F1

σ1oo · · ·σ2oo Fr
σroo 0.oo

♦

Example 1.3.10. Consider the ring R = k[x, y] and the R-module M =
k[x, y]

(x, y2)
. By

Theorem 1.3.5, there exists a surjective graded R-module homomorphism from some free

R-module onto M . Note that M is R modulo an ideal, so by Proposition 1.3.6 it follows

that M is cyclic. Therefore the minimal number of generators of M is 1. So, to construct

the minimal free resolution of
k[x, y]

(x, y2)
as an R-module, we start with the natural map

σ0 : k[x, y] −→ k[x, y]

(x, y2)
that takes 1 to 1:

0
k[x, y]

(x, y2)
oo k[x, y].

σ0oo
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Then the kernel of σ0 is (x, y2), and the inclusion map φ0 : (x, y2) −→ k[x, y] is one-to-

one, giving the short exact sequence:

0 // (x, y2)
φ0 // k[x, y]

σ0 // k[x, y]

(x, y2)
// 0.

Note that (x, y2) is finitely generated. Then by Theorem 1.3.5, we have a graded sur-

jective R-module homomorphism

σ1 : k[x, y](−1)⊕ k[x, y](−2) −→ (x, y2)

defined by σ1

([
r
s

])
= rx+ sy2. The map σ1 composed with φ0 gives us a map

ρ0 = φ0 ◦ σ1 :
k[x, y](−1)
⊕

k[x, y](−2)
−→ k[x, y]

[
r
s

]
7→ rx+ sy2.

Then we have

0
k[x, y]

(x, y2)
oo k[x, y]

σ0oo
k[x, y](−1)
⊕

k[x, y](−2)

ρ0oo

σ1

||
(x, y2)

φ0

^^

{{
0 0

ff

.

It follows that

kerσ1 =

{[
r
s

]
| rx+ sy2 = 0

}
=
−y2k[x, y]
⊕

xk[x, y]
.

We define the inclusion map

φ1 :
−y2k[x, y]
⊕

xk[x, y]
−→

k[x, y](−1)
⊕

k[x, y](−2)
.
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Since
−y2k[x, y]
⊕

xk[x, y]
is finitely generated, then by Theorem 1.3.5 we have the graded surjec-

tive R-module homomorphism

σ2 : k[x, y](−3) −→
−y2k[x, y]
⊕

xk[x, y]

σ2(r) 7→
[
−ry2

rx

]
.

Let ρ1 = φ1 ◦ σ2 : k[x, y](−3) −→
−y2k[x, y]
⊕

xk[x, y]
. Then we have

0
k[x, y]

(x, y2)
oo k[x, y]

σ0oo
k[x, y](−1)
⊕

k[x, y](−2)

ρ0oo k[x, y](−3)
ρ1oo

σ2

zz
−y2k[x, y](−1)

⊕
xk[x, y](−2)

ww

φ1dd

0 0

gg

.

Then kerσ2 =

{
r ∈ k[x, y] |

[
−ry2

rx

]
=

[
0
0

]}
= 0. Therefore the graded minimal free

resolution of
k[x, y]

(x, y2)
is

0
k[x, y]

(x, y2)
oo k[x, y]

σ0oo
k[x, y](−1)
⊕

k[x, y](−2)

ρ0oo k[x, y](−3)
ρ1oo 0.oo

♦

1.4 Betti diagrams and Betti decomposition

We can record information about the twists and generators of any resolution with its

unique Betti diagram. Betti diagrams require a very specific indexing to keep track of this

information.
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Definition 1.4.1. Let V :=

n⊕
i=0

⊕
j∈Z

Q. A diagram is an array D ∈ V . 4

By convention, we use dashes in place of zeros, and do not distinguish between diagrams

with the same non-zero entries. For example, let V =
⊕
i=0

⊕
Z

Q. Then

D =



...
...

...
0 0 0
1 0 0
0 1 1
0 0 0
...

...
...


=

(
1 − −
− 1 1

)
∈ V

is a diagram.

A “Betti diagram” is a diagram with “Betti numbers” as entries. These Betti numbers

are given by the degrees of the different graded pieces of a graded free resolution.

Definition 1.4.2. Let S be a standard graded ring. Let M be a graded free S-module

with free resolution

F . : 0 Moo F0
ρ0oo F1

ρ1oo F2
ρ2oo · · · ,oo

Each Fi is a direct sum of graded pieces,

Fi =
⊕

S(−j)βij

where βij is the number of summands S(−j) in Fi. We call βij the ijth Betti number of

M and denote it βij(M). The Betti diagram of M is given by

β(M) =

 β0,0 β1,1 β2,2 · · · βn,n
β0,1 β1,2 β2,3 · · · βn,n+1
...

. . .

 .

4

Or, equivalently, βij(M) is the number of degree j generators of a basis of Fi. Let’s

construct the Betti diagram of the graded module M =
k[x, y]

(x, y2)
. Recall the resolution F .
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of
k[x, y]

(x, y2)
:

0
k[x, y]

(x, y2)
oo k[x, y]oo k[x, y](−1)⊕ k[x, y](−2)oo k[x, y](−3)oo 0,oo

where F0 = k[x, y], F1 = k[x, y](−1)⊕ k[x, y](−2), F2 = k[x, y](−3). The entries in column

0 of the Betti diagram β(M) are given by F0 =
⊕

k[x, y](−j)β0j(M). Since F0 = k[x, y] =

k[x, y](0)1, then β00(M) = 1 is the only one non-zero entry in column 0. The entries in

column 1 of β(M) are given by

F1 =
⊕

k[x, y](−j)β1,j(M)

= k[x, y](−1)1 ⊕ k[x, y](−2)1,

so β11(M) = 1 and β12(M) = 1 are in column 1 of β(M). Similarly, we find that β22(M) =

0 and β23(M) = 1 are in column 2 of β(M). So, the complete Betti diagram of
k[x, y]

(x, y2)
is

β

(
k[x, y]

(x, y2)

)
=

(
1 1 −
− 1 1

)
.

As mentioned in Section 1.1, one of Boij and Söderberg’s first conjecture was that Betti

diagrams could be written as linear combination of pure diagrams (See Theorem 1.4.4).

Eisenbud and Schreyer later developed an algorithm that decomposes Betti diagrams into

linear combinations of pure diagrams. This algorithm requires “degree sequences” to keep

track of the information stored in a Betti diagram as it is decomposed.

We call a diagram A a pure diagram if it has at most one entry in each column. For

example, the following diagram is a pure diagram:

A =

(
1 2

2

3
−

− − − 6

)
. (1.4.1)

Definition 1.4.3. The n-tuple d ∈ Zn is a degree sequence if dk < dk+1 for all k. We can

compare two degree sequences: d ≤ d′ if di ≤ d′i for all i. 4
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Each pure diagram A has a corresponding “degree sequence” d ∈ Zn that tells us the

form of A, i.e. where the nonzero entries lie in A. The indexing of A is constructed in such

a way that the nonzero entry of A in column r and row s is given by ar,r+s = aij . Each

nonzero entry aij corresponds to di = j in the degree sequence of A. Before stating a formal

definition, let’s work through an example of a pure diagram and its degree sequence.

Consider the pure diagram 1.4.1. The nonzero entries in A are a00 = 1, a11 = 2, a22 =
2

3
,

and a34 = 6. The degree sequence only holds information about where the nonzero entries

are in A and does not care what the values actually are. To construct the degree sequence

of A, we only need the list of the i, j ordered pairs corresponding to the locations of

nonzero entries in A. To construct the degree sequence d using this list, we let di = j. So

d0 = 0, d1 = 1, d2 = 2, d3 = 4, and the degree sequence of A is d = (0, 1, 2, 4).

The location of nonzero Betti numbers of a Betti diagram is important because it holds

information about the degree shifts of the corresponding minimal free resolution. Let S

be a ring and let M be an S-module. Let F . be the minimal free resolution of M . Recall

from Definition 1.4.2 that the ijth Betti number of M , denoted βij , is the number of copies

of S twisted by j in Fi. So, the location of Betti numbers in the Betti diagram β(M) is

directly related to the degree shifts in F ..

The conjecture of Boij and Söderberg view the diagrams as just sitting inside some

vector space, so we should be able to write them as linear combinations of basis elements.

This conjecture, stated as follows in Theorem 1.4.4, was later proved by Eisenbud and

Schreyer.

Theorem 1.4.4 ([2],[5]). Let M be a module of finite length. Then there is a unique chain

of degree sequences {d0 ≤ · · · ≤ ds} and unique scalars ai ∈ Q such that

β(M) =
s∑
i=0

aiπ(di),

where each π(di) is a pure diagram.
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An algorithm was developed by Eisenbud and Schreyer to figure out this linear combi-

nation.

Algorithm 1.4.5 ([5]). Let β be a diagram.

1. Find the top-most nonzero entry in each column of β and construct the degree

sequence d = (a0, a1, a2, . . . , an) corresponding to these top-most nonzero entries.

Construct an elimination matrix π(d) from this degree sequence d:

πij(d) =

0 if j 6= di

Πi 6=i′
1

|di − di′ |
if j = di

.

2. Find a maximal k ∈ Z+ such that each entry of β− kπ is greater than or equal to 0.

3. Go back to step 1 with β − kπ instead of β. Repeat until each entry of the matrix

in step 2 is exactly 0.

Example 1.4.6. We compute the Betti decomposition of the diagram

β =

(
1 1 −
− 1 1

)
.

Given this diagram, we want to decompose β down to a linear combination of pure dia-

grams. Following the algorithm, we find and circle the top-most nonzero entries in each

column:

β =

(
1 1 −
− 1 1

)
.

The form of these circled entries give the degree sequence d0 = (0, 1, 3), which gives us

the elimination matrix π(d0) =

1

3

1

2
−

− − 1

6

.

Now we need to find the largest positive integer k such that each entry in β − kπ(d0)

is greater than or equal to 0. In particular, we need the largest integer solution to the



1. INTRODUCTION. 34

inequalities

1− k

3
≥ 0,

1− k

2
≥ 0,

1− k

6
≥ 0.

From these inequalities, we find that k is at most 2. So, we subtract 2π(d0) from β:

β − 2π(d0) =

1

3
− −

− 1
2

3

 .

Starting again with step 1, we circle the top-most entries of β − 2π(d0): 1/3 − −

− 1 2/3


and construct the corresponding degree sequence d1 = (0, 2, 3) and matrix

π(d1) =

1

6
− −

− 1

2

1

3

 .

Observe that 2π(d1) = β − 2π(d0). Then β − 2π(d0) − 2π(d1) = 0. So, we are left with

β = 2π(d0) + 2π(d1). ♦

So now we have this nice algorithm that lets us write diagrams as linear combinations

of pure diagrams (or basis elements). However, this Betti decomposition algorithm does

not work nicely for any and all diagrams.

1.5 Hilbert function

Given a diagram D, how can we tell whether or not it is a Betti diagram? Right away, we

can figure out what the corresponding resolution would look like based on the entries in

D. For example, consider the diagram

D =

(
1 − 1
− − −

)
.
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The corresponding resolution would look like this:

0 Moo Soo 0oo S(−2)oo 0,oo

and there is no M for which this is a resolution. Therefore D is not a Betti diagram. But

there are more complicated diagrams that we cannot immediately dismiss as not being a

Betti diagram. One way to check whether a module M exists for a given resolution is to

see whether the dimensions match up. We can do this using the Hilbert function.

Definition 1.5.1. The Hilbert function gives us the vector space dimension of a module

M over a field k with respect to the graded degree l. The function is given by

HM (l) := dimkMl.

4

Lemma 1.5.2. Let S = k[x1, . . . , xn] be a ring. Then dimkSl =

(
l + n− 1

n− 1

)
is the number

of degree l monomials in S.

Proof. We use the stars and bars technique, where each arrangement of stars and bars

represents a degree l monomial in S. In this case, the stars are the variables making up

the monomial and the bars separate the stars in terms of variable type. We find that there

are n − 1 bars and l stars, so there are l + n − 1 total places for stars and bars. We first

choose the positions of the n − 1 bars, which forces the positions of the stars. It follows

that there are

(
l + n− 1

n− 1

)
possible arrangements of stars and bars.

Example 1.5.3. Let S = k[x, y, z]. Suppose we want to figure out how many monomials

of degree 4 are in S. Note that each degree 4 monomial in S is consists of 4 variables, which

are some combination of x, y, and z. We can represent this using stars for the variables

in each monomial and bars for the 3 different degree 1 variables in S. We will use two
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bars to separate the four stars into three sections, which correspond to the three degree 1

variables in S. For example

|∗∗∗|∗

represents the degree 4 monomial y3z. In this way, each degree 4 monomial in S can be

represented by a different configuration of 4 stars and 2 bars. To count the number of

degree four monomials in S, we need to count the number of possible configurations of

four stars and two bars. Observe that there are 6 objects total that we can rearrange, and

that choosing where to place the bars will force the positions of the stars. So, there are(
6

2

)
= 15 degree 4 monomials in S:

z4 : ||∗∗∗∗ yz3 : |∗|∗∗∗ y2z2 : |∗∗|∗∗ y3z : |∗∗∗|∗ y4 : |∗∗∗∗|
xz3 : ∗||∗∗∗ xyz2 : ∗|∗|∗∗ xy2z : ∗|∗∗|∗ xy3 : ∗|∗∗∗|
x2z2 : ∗∗||∗∗ x2yz : ∗∗|∗|∗ x2y2 : ∗∗|∗∗|
x3z : ∗∗∗||∗ x3y : ∗∗∗|∗|
x4 : ∗∗∗∗||

.

♦

It follows that we can express the number of degree l monomials in S as

(
l + n− 1

n− 1

)
or,

equivalently

(
l + n− 1

l

)
. Lemma 1.5.2 along with a generalized version of the rank-nullity

theorem, stated in Fact 1.5.4, allows us to compute the Hilbert function.

Fact 1.5.4 ([7, Theorem 5.3.8]). Let

0 // K // A
f // C // 0

be a short exact sequence of k-vector spaces. Then

dimk(ker(f)) + dimk(im(f)) = dimk(A).

Note that since the sequence in Fact 1.5.4 is exact, we have that ker(f) = A and

im(f) = C. It follows that for any short exact sequence of vector spaces over k

0 // K // A // C // 0,
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we have that dimk(A) = dimk(K) + dimk(C).

Proposition 1.5.5. If F . is an exact sequence of k-vector spaces,

F . : 0 Moo F0
ρ0oo F1

ρ1oo F2
ρ2oo · · ·oo Fnoo 0,oo

then dimkM =
n∑
i=0

(−1)idimkFi.

Proof. Let F . be an exact sequence of k-vector spaces,

F . : 0 Moo F0
ρ0oo F1

ρ1oo F2
ρ2oo · · ·ρ3oo Fn

ρnoo 0.oo

We will use the notation Ki = ker(ρi) for all 0 ≤ i ≤ n. Consider the kernel of ρ0, denoted

K0. Then we have the short exact sequence

0 // K0
// F0

ρ0 //M // 0.

It follows from Fact 1.5.4 that dimkF0 = dimkK0 + dimkM . So

dimkM = dimkF0 − dimkK0. (1.5.1)

Since F . is an exact sequence, we have that ker(ρi) = im(ρi+1) for all 0 ≤ i ≤ n. It follows

that K0 = im(ρ1). Then K0 ⊆ F0. So we have the inclusion map σ0 : K0 −→ F0. We also

have the surjection ρ1 : F1 −→ K0. So

F . : 0 Moo F0
ρ0oo F1

ρ1oo
ρ1

||

· · ·ρ2oo Fn
ρnoo 0oo

K0

σ0
bb

||
0 0

bb

.

(1.5.2)

Now consider K1. Since F . is exact, we have that K1 = im(ρ2). Then K1 ⊆ F1. So we have

the inclusion map σ1 : K1 −→ F1 and the surjection ρ2 : F2 −→ K1. Adding these maps to
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(1.5.2), we have

· · · F0
ρ0oo F1

ρ1oo
ρ1

||

F2
ρ2oo

ρ2

||

· · ·ρ3oo

K0

σ0
bb

||

K1

σ1
bb

||

.

0 0

bb

0

bb

Observe that we now have the short exact sequence

0 // K1
σ1 // F1

ρ1 // K0
// 0.

It follows from Fact 1.5.4 that dimkF1 = dimkK1 + dimkK0. Then dimkK0 = dimkF1 −

dimkK1. Substituting dimkF1 − dimkK1 for dimkK0 in (1.5.1), we have that

dimkM = dimkF0 − (dimkF1 − dimkK1)

= dimkF0 − dimkF1 + dimkK1.

Using a similar argument, we find that dimkK1 = dimkF2 − dimkK2. It follows that

dimkM = dimkF0 − dimkF1 + dimkF2 − dimkK2.

In fact, we find that dimkKi = dimkFi+1 − dimkKi+1 for all 1 ≤ i ≤ n. It follows that

dimkM =
n∑
i=0

(−1)idimkFi.

Example 1.5.6. Let S be the polynomial ring k[x, y]. Consider the resolution of M =

k[x, y]/(x, y2) = S/(x, y2) and its corresponding Betti diagram β(M):

0 Moo Soo
S(−1)
⊕

S(−2)

oo S(−3)oo 0,oo

β(M) =

(
1 1 −
− 1 1

)
.

Then

HM (l) = HS(l)−H S(−1)
⊕

S(−2)

(l) +HS(−3)(l).
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Breaking up the direct sums, we get HM (l) = HS(l)−(HS(−1)(l)+HS(−2)(l))+HS(−3)(l),

where HS(l) = dimkSl is the dimension of the lth graded piece of S, i.e. the number

of degree l monomials in S. By the above lemma, we have HS(i)(l) = dimk(Sl(i)) =(
l + i+ 1

1

)
. It follows that

HM (l) =

(
l + 1

1

)
−
(
l − 1 + 1

1

)
−
(
l − 2 + 1

1

)
+

(
l − 3 + 1

1

)
.

Observe that HM (0) = 1, HM (1) = 1, and HM (n) = 0 for n ≥ 2. ♦

For any given M with resolution F . and Betti diagram β(M), we have

HM (l) =
∑
i

(−1)iHFi(l)

=
∑
i,j

(−1)iβ(M)ijHS(−j)(l),

where

HS(−d)(l) =

 0 ; l < d(
(l − d) + n− 1

n− 1

)
; l ≥ d .

We can extend this to get information about whether a diagram is a Betti diagram for

some module M . Since it doesn’t make sense to have a module with dimkM < 0, we can

conclude that if HD(l) is negative for some l ∈ Z then D is not a Betti diagram.

Lemma 1.5.7 ([9]). Let D be a diagram. If HD(l) < 0 for some l ∈ Z then there is no

module M such that β(M) = D, i.e. D is not a Betti diagram.

We cannot conclude from Lemma 1.5.7 that the diagram from Example 1.5.6 is a Betti

diagram. But Lemma 1.5.7 tells us that the diagram from Example 1.5.6 might be a Betti

diagram.



2
Short exact sequences and Betti decompositions

With the information provided in Chapter 1, let’s take another look at Question 1.2.1. We

state it here for convenience.

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

0 // A
f // B

g // C // 0.

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

2.1 A class of Betti diagrams

Recall from Example 1.4.6 that

β =

(
1 1 −
− 1 1

)
= 2

1

3

1

2
−

− − 1

6

+ 2

1

6
− −

− 1

2

1

3

 .

It turns out that this can be extended to all Betti diagrams of the form

(
n n −
− n n

)
.
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Theorem 2.1.1. Any Betti diagram of the form β =

(
n n −
− n n

)
can be written as

β = 2n

1

3

1

2
−

− − 1

6

+ 2n

1

6
− −

− 1

2

1

3

 .

Proof. We will prove this using Algorithm 1.4.5. Note that since we are looking at Betti

diagrams of the same form, the initial degree sequence and pure diagram will always be

d0 = (0, 1, 3) and π(d0) =

1

3

1

2
−

− − 1

6

. The largest a ∈ Z+ for which each entry in

β − aπ(d0) is positive is the largest positive integer that satisfies the inequalities n− a

3
≥

0, n− a

2
≥ 0, and n− a

6
≥ 0. So a = 2n. Then β − 2nπ(d0) =

n3 − −

− n
2n

3

 .

Now we have another degree sequence d1 = (0, 2, 3) and pure diagram π(d1) =1

6
− −

− 1

2

1

3

 . (Note that any Betti diagram of the same form as β will have the same

first degree sequence d1 and pure diagram π(d1).) Observe that 2nπ(d1) = β − 2nπ(d0).

Then β − 2nπ(d0)− 2nπ(d1) = 0. It follows that β = 2nπ(d0) + 2nπ(d1).

Example 2.1.2. Let R = k[x, y]. Consider the finitely generated graded R-module M =

k[x, y]

(x, y2)
from Example 1.2.12. Using Macaulay2 [8], we find that resolution of M ⊕M is

0
M
⊕
M

oo
R
⊕
R

oo

R(−1)
⊕

R(−2)
⊕

R(−1)
⊕

R(−2)

oo
R(−3)
⊕

R(−3)

oo 0,oo

which has the Betti diagram β(M ⊕ M) =

(
2 2 −
− 2 2

)
. By Theorem 2.1.1, the Betti

decomposition algorithm of β(M ⊕M) gives us

β(M ⊕M) = 4

1

3

1

2
−

− − 1

6

+ 4

1

6
− −

− 1

2

1

3

 .
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So, looking at the short exact sequence

0 // k[x, y]

(x, y2)
// k[x, y]

(x, y2)
⊕ k[x, y]

(x, y2)
// k[x, y]

(x, y2)
// 0,

we find that the Betti decomposition of the middle module is the sum of the Betti decom-

positions of the two outer modules. ♦

2.2 Direct sums of finitely generated graded R-modules in short
exact sequences, and their Betti decompositions

Consider the short exact sequence of finitely generated graded R-modules M,N :

0 //M //M ⊕N // N // 0.

We want to describe the relationship between β(M ⊕ N) and β(M), β(N). In Corollary

2.2.3, we find that

β(M) + β(N) = β(M ⊕N).

In the case where

β(M) = β(N) =

(
n n −
− n n

)
,

there is also a nice relationship between the Betti decompositions of β(M), β(N) and the

Betti decomposition of β(M ⊕N).

Proposition 2.2.1. Let R be a ring. Let f, g be R-module homomorphisms. Then

ker(f)⊕ ker(g) = ker(f ⊕ g)

and

im(f)⊕ im(g) = im(f ⊕ g).

Proof. Let R be a ring. Let A,B,C,D be R-modules such that A∩C = ∅ and B∩D = ∅.

Let f : A −→ B and g : C −→ D be R-module homomorphisms. Then A⊕C and B⊕D are
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R-modules. So, we have the R-module homomorphism

f ⊕ g : A⊕ C −→ B ⊕D

(a, c) 7→ (f(a), g(c)).

We want to show that

ker(f)⊕ ker(g) = ker(f ⊕ g) (2.2.1)

and

im(f)⊕ im(g) = im(f ⊕ g). (2.2.2)

To prove (2.2.1), it suffices to show that

ker(f)⊕ ker(g) ⊆ ker(f ⊕ g)

and

ker(f ⊕ g) ⊆ ker(f)⊕ ker(g).

Let (a, c) ∈ ker(f) ⊕ ker(g). Then a ∈ ker(f) and c ∈ ker(g). Then we have f(a) = 0

and g(c) = 0. So by definition of f ⊕ g, it follows that (f ⊕ g)(a, c) = (f(a), g(c)) = (0, 0).

Therefore (a, c) ∈ ker(f ⊕ g). It follows that ker(f)⊕ ker(g) ⊆ ker(f ⊕ g).

Let (a, c) ∈ ker(f ⊕ g). Using a similar argument in the reverse direction, we find that

(a, c) ∈ ker(f)⊕ ker(g). Therefore ker(f ⊕ g) ⊆ ker(f)⊕ ker(g). Then (2.2.1) follows.

To prove (2.2.2), it suffices to show that

im(f)⊕ im(g) ⊆ im(f ⊕ g)

and

im(f ⊕ g) ⊆ im(f)⊕ im(g).

Let (b, d) ∈ im(f)⊕ im(g). Then b ∈ im(f) and d ∈ im(g). It follows that b = f(a), d =

g(c) for some a ∈ A, c ∈ C. By our definition of f⊕g, we have that (f(a), g(c)) ∈ im(f⊕g).

It follows that (b, d) ∈ im(f ⊕ g). Thus im(f)⊕ im(g) ⊆ im(f ⊕ g).
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Let (b, d) ∈ im(f ⊕ g). Following the same argument in the reverse direction, it follows

that (b, d) ∈ im(f)⊕ im(g). Then im(f ⊕ g) ⊆ im(f)⊕ im(g), so (2.2.2) follows.

We use Proposition 2.2.1 to prove Proposition 2.2.2.

Proposition 2.2.2. Let R = k[x1, . . . , xn] be a ring over a field k. Let M,N be a finitely

generated graded free R-modules. Let F . be the minimal free resolution of M and let G.

be the minimal free resolution of N . Then the minimal free resolution of M ⊕N is given

by

H. : 0 M ⊕Noo H0
oo H1

oo · · ·oo Hl,oo

where Hi := Fi ⊕Gi.

Proof. Let R = k[x1, . . . , xn] be a ring over a field k. Let M,N be a finitely generated

graded free R-modules such that M∩N = ∅. Let M be of length lM and let m be a minimal

generating set of M . Let F . be the graded minimal free resolution of M constructed as in

Remark 1.3.9,

F . : 0 Moo F0
γ0oo F1

φ0oo
γ1

{{

· · ·φ1oo
γ2

{{

FlM .
φ(lM−1)oo

γ(lM )

xx
ker(γ0)

f0
cc

{{

ker(γ1)

f1
cc

{{

ker(γlM−1
)

flM−1
ee

yy
0 0

cc

· · ·

dd

0

ff

Similarly, let N be a finitely generated graded free R-module of length lN and let n be a

minimal generating set. Let G. be the graded minimal free resolution of N constructed as

in Remark 1.3.9,

G. : 0 Noo G0
ψ0oo G1

ρ0oo
ψ1

{{

· · ·ρ1oo
ψ2

{{

GlN .
ρ(lN−1)oo

ψ(lN )

xx
ker(ψ0)

g0
cc

zz

ker(ψ1)

g1
cc

zz

ker(ψlN−1
)

glN−1
ee

yy
0 0

dd

· · ·

dd

0

ff
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It follows that F0, G0 are finitely generated free R-modules constructed using the degrees

of the minimal generating sets m,n of M,N , respectively. And for i ≥ 1, each Fi, Gi is a

finitely generated free R-module constructed using the degrees of the minimal generating

sets pi, qi of ker(γi), ker(φi), respectively. Refer to Theorem 1.3.5 and Remark 1.3.9 for

more detail regarding the construction of Fi, Gi using the degrees of the sets pi, qi.

In order to prove Proposition 2.2.2, we will construct the graded minimal free resolution

H. of M ⊕N . As we describe this construction, we will show that each Hi = Fi ⊕ Gi in

the graded minimal free resolution of M ⊕N .

Consider M⊕N . Since m,n are minimal generating sets of M,N , respectively, it follows

that m ⊕ n is a minimal generating set of M ⊕ N . By Theorem 1.3.5, there is a finitely

generated free module H0 constructed using the degrees of elements of m ⊕ n and the

surjective graded R-module homomorphism π0 : H0 −→ M ⊕ N . Recall that we have the

surjective graded R-module homomorphisms γ0 : F0 −→M and ψ0 : G0 −→ N where F0, G0

were constructed using the degrees of m,n, respectively. It follows that H0 = F0⊕G0 and

that

π0 = γ0 ⊕ ψ0 : F0 ⊕G0 −→M ⊕N.

Then we have the short exact sequence

0 // ker(π0)
δ0 // H0

π0 //M ⊕N // 0.

By Proposition 2.2.1, we have that

ker(π0) = ker(γ0 ⊕ ψ0)

= ker(γ0)⊕ ker(ψ0).

Recall that p0, q0 are minimal generating sets of ker(γ0), ker(ψ0), respectively. It follows

that p0 ⊕ q0 is a minimal generating set of ker(π0). By Theorem 1.3.5, there is a finitely
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generated free R-module H1 and a graded surjective R-module homomorphism

π1 : H1 −→ ker(π0)

such that H1 was constructed using the degrees of p0⊕ q0. Recall that we have the graded

surjective R-module homomorphisms γ1 : F1 −→ ker(γ0) and ψ1 : G1 −→ ker(ψ0) where

p0, q0 are minimal generating sets of ker(γ0), ker(ψ0), respectively, and F1, G1 are con-

structed using the degrees of p0, q0, respectively. It follows that H1 = F1 ⊕G1 and that

π1 = γ1 ⊕ ψ1 : F1 ⊕G1 −→ ker(γ0)⊕ ker(ψ0) = ker(π0).

Then we can define the R-module homomorphism

σ0 := δ0 ◦ π1 : H1 −→ H0.

Then we have

0 M ⊕Noo H0
π0oo H1

σ1oo
π1

yy
ker(π0)

δ0
ee

yy
0 0

ee

.

Observe that

0 // ker(π1)
δ0 // H1

π1 // ker(π0) // 0

is a short exact sequence. Recall that π1 = γ1 ⊕ ψ1. Therefore

ker(π1) = ker(γ1 ⊕ ψ1)

= ker(γ1)⊕ ker(ψ1).

Recall that ker(γ1), ker(ψ1) are finitely generated by minimal generating sets p1, q1, respec-

tively. It follows that p1 ⊕ q1 is a minimal generating set of ker(γ1) ⊕ ker(ψ1). Therefore

p1 ⊕ q1 is a minimal generating set of ker(π1). Then we have a surjective R-module ho-

momorphism π2 : H2 −→ ker(π1) where H2 is constructed using the degrees of p1 ⊕ q1.
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Recall that F2, G2 are constructed using the degrees of p1, q1, respectively. It follows that

H2 = F2 ⊕G2.

We can continue in this manner to find the surjective R-module homomorphisms

πi : Hi = Fi ⊕Gi −→ ker(πi−1) = ker(γi−1)⊕ ker(ψi−1)

for i ≤ max lM , lN .

The following corollary is a direct result of Proposition 2.2.2.

Corollary 2.2.3. Let R = k[x1, . . . , xn] be a ring over a field k. Let M,N be a finitely

generated graded free R-modules. Given the short exact sequence

0 //M //M ⊕N // N // 0,

then β(M) + β(N) = β(M ⊕N).

For the specific class of Betti diagrams described in Section 2.1, we have a further result

that relates not only the Betti diagrams of the modules in a short exact sequence, but also

their Betti decompositions.

Proposition 2.2.4. Let R = k[x, y] be a ring over a field k. Let M be a finitely generated

free graded R-module with the Betti diagram β(M) =

(
n n −
− n n

)
. Given the short exact

sequence

0 //M //M ⊕M //M // 0,

the sum of the Betti decompositions of the two outer modules is the Betti decomposition

of M ⊕M .

Proof. Let R = k[x, y] be a ring over a field k. Let M be a finitely generated free graded

R-module with the Betti diagram β(M) =

(
n n −
− n n

)
.
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By Corollary 2.2.3, we have that

β(M) + β(M) = β(M ⊕M) =

(
2n 2n −
− 2n 2n

)
. By Theorem 2.1.1, we have the Betti decompositions of M and M ⊕M :

β(M) = 2n

1

3

1

2
−

− − 1

6

+ 2n

1

6
− −

− 1

2

1

3

 ,

β(M ⊕M) = 4n

1

3

1

2
−

− − 1

6

+ 4n

1

6
− −

− 1

2

1

3

 .

Observe that

2n

1

3

1

2
−

− − 1

6

+ 2n

1

6
− −

− 1

2

1

3


+ 2n

1

3

1

2
−

− − 1

6

+ 2n

1

6
− −

− 1

2

1

3


= 4n

1

3

1

2
−

− − 1

6

+ 4n

1

6
− −

− 1

2

1

3

 .

Thus the Betti decomposition of M added to the Betti decomposition of M is the Betti

decomposition of M ⊕M .



3
Complete intersections

Recall from Section 1.2 the second main question, stated here for convenience:

Question 1.2.2. Let S = k[x1, . . . , xd] be a polynomial ring over a field k and let I =

(f1, . . . , fd) be an ideal of S generated by a homogeneous regular sequence with deg(fi) = ei.

What is the Betti decomposition of S/I in terms of the degrees ei?

In [6], this question was posed an answered up to codimension ≤ 3 (see Proposition

3.1.4).

3.1 Complete intersections in codimension ≤ 3

Before going into the exciting new answers to Question 1.2.2, we must first define the new

terms from Question 1.2.2.

Definition 3.1.1. Let R be a standard graded ring. Then f1, . . . , fd is a homogeneous

regular sequence on R if

i. fi is homogeneous for all 1 ≤ i ≤ d,

ii. the ideal (f1, . . . , fd) 6= R,
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iii. there is no non-zero g ∈ R such that f1 · g = 0, and

iv. for all 2 ≤ i ≤ d, there is no non-zero g ∈ R/(f1, . . . , fi−1) such that g · fi = 0.

4

Example 3.1.2. Let R = k[x, y, z]. Then x4, y7, z8 is a homogeneous regular sequence on

R. Observe that x4, y7, z8 are all homogeneous. Consider the ideal (x4, y7, z8) ⊆ R. Note

that xy ∈ R and xy /∈ (x4, y7, z8), so (x4, y7, z8) 6= R. Observe that x4 · r 6= 0 for all

non-zero r ∈ R. Consider s ∈ R/(x4), s 6= 0. Then s = s+ (x4), and y7 · s = y7 · s+ (x4).

Since s 6= 0, it follows that s is not a multiple of x4. This forces y7 · s 6= 0. Consider

t ∈ R/(x4, y7), t 6= 0. Then t = t+ (x4, y7), and z8 · t /∈ (x4, y7). So z8 · t 6= 0. ♦

Definition 3.1.3. Let S = k[x1, . . . , xn] be a polynomial ring over a field k. Let f1, . . . , fd

be a homogeneous regular sequence. If I = (f1, . . . , fd), then the ring S/I is called a graded

complete intersection. 4

We say that a complete intersection of the form k[x1, . . . , xd]/(f1, . . . , fd) is in codimension

d.

The initial answer to Question 1.2.2 from [6] is restated in Proposition 3.1.4.

Proposition 3.1.4 ([6]). Let S = k[x1, . . . , xd] be a polynomial ring over a field k and

let I = (f1, . . . , fd) be an ideal of S generated by a homogeneous regular sequence with

deg(fi) = ei. If d ≤ 3, then the Betti decomposition of S/I obtained from Algorithm 1.4.5

is completely determined by the degrees e1, . . . , ed. In particular, for
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d = 1 : β(S/I) = e1 · π(0, e1)

d = 2 : β(S/I) = e1e2 · π(0, e1, e1 + e2) + e1e2 · π(0, e2, e1 + e2)

d = 3 : If e1 ≤ e2 ≤ e3, then

β(S/I) = e1e2(e2 + e3) · π(0, e1, e1 + e2, e1 + e2 + e3)
+e1e2(e3 − e1) · π(0, e2, e1 + e2, e1 + e2 + e3)
+2e1e2(e1 + e3 − e2) · π(0, e2, e1 + e3, e1 + e2 + e3)
+e1e2(e3 − e1) · π(0, e3, e1 + e3, e1 + e2 + e3)
+e1e2(e2 + e3) · π(0, e3, e2 + e3, e1 + e2 + e3)

In Section 3.2, we extend Proposition 3.1.4 to d = 4. This will allow us to describe the

Betti decomposition of complete intersections of the form S = k[x, y, z, w]/(xe1 , ye2 , ze3 , we4),

for e1, e2, e3, e4 ∈ Z+. We consider the the first five of the following cases:

(i) e1 = e2 = e3 = e4,

(ii) e1 = e2 = e3 < e4,

(iii) e1 = e2 < e3 = e4,

(iv) e1 < e2 = e3 = e4,

(v) e1 = e2 < e3 < e4,

(vi) e1 < e2 = e3 < e4,

(vii) e1 < e2 < e3 = e4,

(viii) e1 < e2 < e3 < e4.

3.2 Cases of complete intersections in codimension 4

We will consider cases (i), (ii), (iii), (iv), and (v), as stated at the end of the previous

section. In the following proofs of Propositions 3.2.1, 3.2.2, 3.2.3, and 3.2.4, we omit the
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entries in the first and last columns in the Betti decomposition algorithm because these

entries will always be eliminated in the final step of the algorithm.

Proposition 3.2.1. Let S = k[x, y, z, w] be a polynomial ring over a field k and let

I = (xα, yα, zα, wα) be an ideal of S generated by a homogeneous regular sequence. Then

the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

β(S/I) = 24α4π(0, α, 2α, 3α, 4α).

Proof. Let S = k[x, y, z, w] be a polynomial ring over a field k and let I = (xα, yα, zα, wα)

be an ideal of S generated by a homogeneous regular sequence. We construct the graded

minimal free resolution of S/I as described in Remark 1.3.9:

S/I Soo S4(−α)oo S6(−2α)oo S4(−3α)oo S(−4α)oo 0.oo

The corresponding Betti diagram β(S/I), denoted β, has nonzero entries given by

β0,0 = 1, β1,α = 4, β2,2α = 6, β3,3α = 4, β4,4α = 1.

We use Algorithm 1.4.5 to find the Betti decomposition of S/I. The first and only degree

sequence for the decomposition of this Betti diagram is d = (0, α, 2α, 3α, 4α) with corre-

sponding elimination matrix π(d) with nonzero entries:

π(d)1,α =
1

6α4

π(d)2,2α =
1

4α4

π(d)3,3α =
1

6α4
.

Observe that β = 24α4π(d).
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Proposition 3.2.2. Let S = k[x, y, z, w] be a polynomial ring over a field k and let

I = (xα, yα, zα, wδ) be an ideal of S generated by a homogeneous regular sequence. Let

α < δ. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

β(S/I) = 6α3δπ(0, α, 2α, 3α, 3α+ δ)

+6α3δπ(0, α, 2α, 2α+ δ, 3α+ δ)

+6α3δπ(0, α, α+ δ, 2α+ δ, 3α+ δ)

+6α3δπ(0, δ, α+ δ, 2α+ δ, 3α+ δ).

Proof. Let S = k[x, y, z, w] be a polynomial ring over a field k and let I = (xα, yα, zα, wδ)

be an ideal of S generated by a homogeneous regular sequence. Let α < δ. We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:

S/I Soo
S3(−α)
⊕

S(−δ)
oo

S3(−2α)
⊕

S3(−α− δ)
oo

S(−3α)
⊕

S3(−2α− δ)
oo S(−3α− δ)oo 0.oo

Then the Betti diagram of S/I, denoted β(0), has nonzero entries

β
(0)
0,0 = 1, β

(0)
1,α = 3, β

(0)
1,δ = 1, β

(0)
2,2α = 3, β

(0)
2,α+δ = 3, β

(0)
3,3α = 1, β

(0)
3,2α+δ = 3, β

(0)
4,3α+δ = 1.

We follow Algorithm 1.4.5 to find the Betti decomposition of β(0). The first degree sequence

in the decomposition of β(0) is given by d0 = (0, α, 2α, 3α, 3α+δ). Then the nonzero entries

of the first elimination matrix are given by π(d0):

π(d0)1,α =
1

2α3(2α+ δ)

π(d0)2,2α =
1

2α3(α+ δ)

π(d0)3,3α =
1

6α3δ
.

We want to construct a new β(1) = β(0)−x0π(d0) by substracting a scalar multiple x0 ∈ Z+
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of π(d0) from β(0) so that the result has entries 0 or greater than 0 and that we eliminate

one of the nonzero entries from β(0). This scalar will be the largest x0 that satisfies the

following inequalities:

3− x0

2α3(2α+ δ)
≥ 0

3− x0

2α3(α+ δ)
≥ 0

1− x0

6α3δ
≥ 0.

We see that 6α3δ satisfies the above inequalities. Then β(1) = β(0)−6α3δπ(d0) has nonzero

entries given by

β
(1)
1,α =

6α

2α+ δ
β

(1)
1,δ = 1

β
(1)
2,2α =

3α

α+ δ
β

(1)
2,α+δ = 3

β
(1)
3,3α = 0

β
(1)
3,2α+δ = 3.

Following Algorithm 1.4.5, we have the degree sequence d1 = (0, α, 2α, 2α+ δ, 3α+ δ) and

nonzero entries of the corresponding elimination matrix π(d1):

π(d1)1,α =
1

α2(α+ δ)(2α+ δ)

π(d1)2,2α =
1

2α2δ(α+ δ)

π(d1)3,2α+δ =
1

αδ(α+ δ)(2α+ δ)
.

We find that the largest x1 such that each entry of β(2) = β(1) − x1π(d1) is greater than

or equal to 0 is 6α3δ:
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6α

2α+ δ
− x1

α2(α+ δ)(2α+ δ)
≥ 0

3α

α+ δ
− x1

2α2δ(α+ δ)
≥ 0

3− x1

αδ(α+ δ)(2α+ δ)
≥ 0.

Then the nonzero entries of β(2) are given by

β
(2)
0,0 =

6α2

(2α+ δ)(3α+ δ)

β
(2)
1,α =

6α2

(α+ δ)(2α+ δ)

β
(2)
1,δ = 1

β
(2)
2,2α = 0

β
(2)
2,α+δ = 3

β
(2)
3,2α+δ =

3δ(3α+ δ)

(α+ δ)(2α+ δ)

β
(2)
4,3α+δ =

δ(5α2 + 6αδ + δ2)

(α+ δ)(2α+ δ)(3α+ δ)
.

Then the next degree sequence is d2 = (0, α, α+ δ, 2α+ δ, 3α+ δ) and the nonzero entries

of the elimination matrix π(d2) are

π(d2)1,α =
1

αδ(α+ δ)(2α+ δ)

π(d2)2,α+δ =
1

2α2δ(α+ δ)

π(d2)3,2α+δ =
1

α2(α+ δ)(2α+ δ)
.

We find that 6α3 is the largest x2 such that β(3) = β(2) − x2δπ(d2) has entries that are

greater than or equal to zero. The nonzero entries of β(3) are:
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β
(3)
1,α = 0

β
(3)
1,δ = 1

β
(3)
2,α+δ =

3δ

α+ δ

β
(3)
3,2α+δ =

3δ

2α+ δ

Then we have our final degree sequence d3 = (0, δ, α + δ, 2α + δ, 3α + δ) and the nonzero

entries of the corresponding elimination matrix π(d3):

π(d3)1,δ =
1

6α3δ

π(d3)2,α+δ =
1

2α3(α+ δ)

π(d3)3,2α+δ =
1

2α3(2α+ δ)
.

Observe that β(3) = 6α3δπ(d3). Then

β(0) = 6α3δπ(0, α, 2α, 3α, 3α+ δ)

+6α3δπ(0, α, 2α, 2α+ δ, 3α+ δ)

+6α3δπ(0, α, α+ δ, 2α+ δ, 3α+ δ)

+6α3δπ(0, δ, α+ δ, 2α+ δ, 3α+ δ).

Proposition 3.2.3. Let S = k[x, y, z, w] be a polynomial ring over a field k and let

I = (xα, yα, zδ, wδ) be an ideal of S generated by a homogeneous regular sequence. Let

α < δ. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

β(S/I) = 4α2δ2π(0, α, 2α, 2α+ δ, 2α+ 2δ)

+2α2δ(α+ 3δ)π(0, α, α+ δ, 2α+ δ, 2α+ 2δ)

+4α2δ(δ − α)π(0, δ, α+ δ, 2α+ δ, 2α+ 2δ)

+2α2δ(α+ 3δ)π(0, δ, α+ δ, α+ 2δ, 2α+ 2δ)

+4α2δ2π(0, δ, 2δ, α+ 2δ, 2α+ 2δ)
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Proof. Let S = k[x, y, z, w] be a polynomial ring over a field k and let I = (xα, yα, zδ, wδ)

be an ideal of S generated by a homogeneous regular sequence. Let α < δ. We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:

S/I Soo
S2(−α)
⊕

S2(−δ)
oo

S(−2α)
⊕

S4(−α− δ)
⊕

S(−2δ)

oo
S2(−2α− δ)

⊕
S2(−α− 2δ)

oo S(−2α− 2δ)oo 0.oo

The nonzero entries of β(S/I), denoted β(0), are

β
(0)
0,0 = 1, β

(0)
1,α = 2, β

(0)
1,δ = 2,

β
(0)
2,2α = 1, β

(0)
2,α+δ = 4β

(0)
2,2δ = 1,

β
(0)
3,2α+δ = 2, β

(0)
3,α+2δ = 2, β

(0)
4,2α+2δ = 1.

The first degree sequence is d0 = (0, α, 2α, 2α + δ, 2α + 2δ). The non-zero entries of the

corresponding elimination matrix π(d0) are as follows:

π(d0)1,α =
1

α2(α+ δ)(α+ 2δ)

π(d0)2,2α =
1

4α2δ2

π(d0)3,2α+δ =
1

δ2(2α+ δ)(α+ δ)
.

We want to find the largest x0 such that β(0) − x0π(d0) has entries ≥ 0. So, we need to

find the largest x0 such that

x0 ≤ 2α4 + 6α3δ + 4α2δ2

x0 ≤ 4α2δ2

x04α2δ2 + 6αδ3 + 2δ4.

We have that 4α2δ2 < 2α4 + 6α3δ+ 4α2δ2 and 4α2δ2 < 4α2δ2 + 6αδ3 + 2δ4, so x0 = 4α2δ2

is the largest solution. So, we choose x0 = 4α2δ2 as the coefficient for π(d0). Let β(1) =
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β(0) − 4α2δ2π(d0). Then β(1) has entries

β
(1)
1,α = 2− 4α2δ2

α2(α+ δ)(α+ 2δ)
=

2α(α+ 3δ)

(α+ δ)(α+ 2δ)
,

β
(1)
2,2α = 1− 4α2δ2

4α2δ2
= 0,

β
(1)
3,2α+δ = 2− 4α2δ2

δ2(2α+ δ)(α+ δ)
=

2δ(3α+ δ)

(2α+ δ)(α+ δ)
.

Our next degree sequence is d1 = (0, α, α + δ, 2α + δ, 2α + 2δ) and has a corresponding

elimination matrix π(d1) with non-zero entries

π(d1)1,α =
1

αδ(α+ δ)(α+ 2δ)
,

π(d1)2,α+δ =
1

αδ(α+ δ)2
,

π(d1)3,2α+δ =
1

αδ(α+ δ)(2α+ δ)
.

So, we need to find the largest x1 such that

x1 ≤ 2α2δ(α+ 3δ) = 2α3δ + 6α2δ2,

x1 ≤ 4αδ(α+ δ)2 = 4α3δ + 8α2δ2 + 4αδ3,

x1 ≤ 2αδ2(3α+ δ) = 6α2δ2 + 2αδ3.

We see that 2α3δ+ 6α2δ2 < 4α3δ+ 8α2δ2 + 4αδ3 and 2α3δ+ 6α2δ2 < 6α2δ2 + 2αδ3, since

α < δ. So, we choose x1 = 2α2δ(α+ 3δ) = 2α3δ + 6α2δ2 as the coefficient for π(d1). Now

let β(2) = β(1) − 2α2δ(α+ 3δ)π(d1). Then β(2) has entries

β
(2)
1,α = 0

β
(2)
2,α+δ = 4− 2α2δ(α+ 3δ)

αδ(α+ δ)2
=

2(α2 + αδ + 2δ2)

(α+ δ)2

β
(2)
3,2α+δ =

2δ(3α+ δ)

(2α+ δ)(α+ δ)
− 2α2δ(α+ 3δ)

αδ(α+ δ)(2α+ δ)
=

2(δ − α)

(2α+ δ)
.
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The next degree sequence is d2 = (0, δ, α+ δ, 2α+ δ, 2α+ 2δ), which has a corresponding

elimination matrix π(d2) with the following entries:

π(d2)1,δ =
1

2α2δ(2α+ δ)
,

π(d2)2,α+δ =
1

α2(α+ δ)2
,

π(d2)3,2α+δ =
1

2α2δ(2α+ δ)
.

We need to find the largest x2 such that the entries of β(2) − x2π(d2) are greater than or

equal to 0. So, we need the largest x2 such that

x2 ≤ 4α2δ(2α+ δ) = 8α3δ + 4α2δ2,

x2 ≤ α2(2α2 + 2αδ + 4δ2) = 2α4 + 2α3δ + 4α2δ2,

and x2 ≤ 4α2δ(δ − α) = 4α2δ2 − 4α3δ.

Since α, δ ≥ 0, it follows that 4α2δ2 − 4α3δ < 8α3δ + 4α2δ2 and 4α2δ2 − 4α3δ < 2α4 +

2α3δ+ 4α2δ2. So, we choose x2 = 4α2δ(δ−α) = 4α2δ2− 4α3δ as the coefficient for π(d2).

Now, we let β(3) = β(2) − 4α2δ(δ − α)π(d2), which has the following entries:

β
(3)
1,δ =

6α

2α+ δ
,

β
(3)
2,α+δ =

2α(α+ 3δ)

(α+ δ)2
,

β
(3)
3,2α+δ = 0.

The next degree sequence is d3 = (0, δ, α+ δ, α+ 2δ, 2α+ 2δ), which has a corresponding

elimination matrix π(d3) with entries

π(d3)1,δ =
1

αδ(α+ δ)(2α+ δ)
,

π(d3)2,α+δ =
1

αδ(α+ δ)2
,

π(d3)3,α+2δ =
1

αδ(α+ δ)(α+ 2δ)
.
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So, we need to find the largest x3 such that β(3) − x3π(d3) has entries that are all ≥ 0.

Then we want the largest x3 such that

x3 ≤ 6α2δ(α+ δ) = 6α3δ + 6α2δ2,

x3 ≤ 2α2δ(α+ 3δ) = 2α3δ + 6α2δ2,

x3 ≤ 2αδ(α+ δ)(α+ 2δ) = 2α3δ + 6α2δ2 + 4αδ3.

Observe that 2α3δ + 6α2δ2 < 6α3δ + 6α2δ2 and 2α3δ + 6α2δ2 < 2α3δ + 6α2δ2 + 4αδ3.

So, we choose x3 = 2α2δ(α + 3δ) = 2α3δ + 6α2δ2 as the coefficient for π(d3). Now let

β(4) = β(3) − 2α2δ(α+ 3δ)π(d3). Then β(4) has entries

β
(4)
1,δ =

6α

2α+ δ
− 2α2δ(α+ 3δ)

αδ(α+ δ)(2α+ δ)
=

4α2

(α+ δ)(2α+ δ)
,

β
(4)
2,α+δ =

2α(α+ 3δ)

(α+ δ)2
− 2α2δ(α+ 3δ)

αδ(α+ δ)2
= 0,

β
(4)
3,α+2δ = 2− 2α2δ(α+ 3δ)

αδ(α+ δ)(α+ 2δ)
=

4δ2

(α+ δ)(α+ 2δ)
.

The final degree sequence is d4 = (0, δ, 2δ, α + 2δ, 2α + 2δ), which has corresponding

elimination matrix π(d4) with entries

π(d4)1,δ =
1

δ2(α+ δ)(2α+ δ)
,

π(d4)2,2δ =
1

4α2δ2
,

π(d4)3,α+2δ =
1

α2(α+ δ)(α+ 2δ)
.

Notice that 4α2δ2π(d4) = β(4). So we are left with

β(0) = 4α2δ2π(0, α, 2α, 2α+ δ, 2α+ 2δ)

+2α2δ(α+ 3δ)π(0, α, α+ δ, 2α+ δ, 2α+ 2δ)

+4α2δ(δ − α)π(0, δ, α+ δ, 2α+ δ, 2α+ 2δ)

+2α2δ(α+ 3δ)π(0, δ, α+ δ, α+ 2δ, 2α+ 2δ)

+4α2δ2π(0, δ, 2δ, α+ 2δ, 2α+ 2δ).
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Proposition 3.2.4. Let S = k[x, y, z, w] be a polynomial ring over a field k and let

I = (xα, yδ, zδ, wδ) be an ideal of S generated by a homogeneous regular sequence. Let

α < δ. Then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is given by

β(S/I) = 6αδ3π(0, α, α+ δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, α+ δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, 2δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, 2δ, 3δ, α+ 3δ).

Proof. Let S = k[x, y, z, w] be a polynomial ring over a field k and let I = (xα, yδ, zδ, wδ)

be an ideal of S generated by a homogeneous regular sequence. Let α < δ. We construct

the graded minimal free resolution of S/I as in Remark 1.3.9:

S/I Soo
S(−α)
⊕

S3(−δ)
oo

S3(−2α)
⊕

S3(−α− δ)
oo

S(−α− 2δ)
⊕

S(−3δ)

oo S(−α− 3δ)oo 0.oo

Then the Betti diagram of S/I, denoted β(0), has nonzero entries

β
(0)
0,0 = 1, β

(0)
1,α = 1, β

(0)
1,δ = 3, β

(0)
2,α+δ = 3, β

(0)
2,2δ = 3, β

(0)
3,α+2δ = 3, β

(0)
3,3δ = 1, β

(0)
4,α+3δ = 1.

We follow Algorithm 1.4.5 to find the Betti decomposition of β(0). The first degree sequence

in the decomposition of β(0) is given by d0 = (0, α, α+ δ, α+ 2δ, α+ 3δ). Then the nonzero

entries of the first elimination matrix are given by π(d0):

π(d0)1,α =
1

6αδ3

π(d0)2,α+δ =
1

2δ3(α+ δ)

π(d0)3,α+2δ =
1

2δ3(α+ 2δ)
.

We want to construct a new β(1) = β(0)−x0π(d0) by substracting a scalar multiple x0 ∈ Z+
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of π(d0) from β(0) so that the result has entries 0 or greater than 0 and that we eliminate

one of the nonzero entries from β(0). This scalar will be the largest x0 that satisfies the

following inequalities:

1− x0

6αδ3
≥ 0

3− x0

2δ3(α+ δ)
≥ 0

3− x0

2δ3(α+ 2δ)
≥ 0.

We see that 6αδ3 satisfies the above inequalities. Then β(1) = β(0)−6αδ3π(d0) has nonzero

entries given by

β
(1)
1,α = 0

β
(1)
1,δ = 3

β
(1)
2,α+δ =

3δ

α+ δ
β

(1)
2,2δ = 3

β
(1)
3,α+2δ =

6δ

(α+ 2δ)

β
(1)
3,3δ = 1.

Following Algorithm 1.4.5, we have the degree sequence d1 = (0, δ, α + δ, α + 2δ, α + 3δ)

and nonzero entries of the corresponding elimination matrix π(d1):

π(d1)1,δ =
1

αδ(α+ δ)(2α+ δ)

π(d1)2,α+δ =
1

2αδ2(α+ δ)

π(d1)3,α+2δ =
1

δ2(α+ δ)(α+ 2δ)
.

We find that the largest x1 such that each entry of β(2) = β(1) − x1π(d1) is greater than

or equal to 0 is 6αδ3:
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3− x1

αδ(α+ δ)(α+ 2δ)
≥ 0

3δ

α+ δ
− x1

2αδ2(α+ δ)
≥ 0

6δ

α+ 2δ
− x1

δ2(α+ δ)(α+ 2δ)
≥ 0.

Then the nonzero entries of β(2) are given by

β
(2)
1,δ =

3α(α+ 3δ)

(α+ δ)(α+ 2δ)

β
(2)
2,α+δ = 0

β
(2)
2,2δ = 3

β
(2)
3,α+2δ =

6δ2

(α+ δ)(α+ 2δ)

β
(2)
3,3δ = 1

Then the next degree sequence is d2 = (0, δ, 2δ, α+ 2δ, α+ 3δ) and the nonzero entries of

the elimination matrix π(d2) are

π(d2)1,δ =
1

δ2(α+ δ)(α+ 2δ)

π(d2)2,2δ =
1

2αδ2(α+ δ)

π(d2)3,α+2δ =
1

αδ(α+ δ)(α+ 2δ)
.

We find that 6δ3 is the largest x2 such that β(3) = β(2) − x2δπ(d2) has entries that are

greater than or equal to zero. The nonzero entries of β(3) are:

β
(3)
1,δ =

3α

(α+ 2δ)

β
(3)
2,2δ =

6α

2(α+ δ)

β
(3)
3,α+2δ = 0

β
(3)
3,3δ = 1
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Then we have our final degree sequence d3 = (0, δ, α + δ, 2α + δ, 3α + δ) and the nonzero

entries of the corresponding elimination matrix π(d3):

π(d3)1,δ =
1

2δ3(α+ 2δ)

π(d3)2,2δ =
1

2δ3(α+ δ)

π(d3)3,3δ =
1

6αδ3
.

Observe that 6αδ3π(d3) = β(3). So we have

β(0) = 6αδ3π(0, α, α+ δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, α+ δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, 2δ, α+ 2δ, α+ 3δ)

+6αδ3π(0, δ, 2δ, 3δ, α+ 3δ).

Let S/I = k[x, y, z, w]/(xα, yα, zγ , wδ) such that α < γ < δ. We attempt to construct a

general form for the Betti decomposition of S/I using a similar method as with Proposi-

tions 3.2.1, 3.2.2, 3.2.3, and 3.2.4, but we find that this strategy alone will not suffice. We

begin to find the general Betti decomposition of S/I in order to identify the problem. We

construct the resolution of S/I as in Remark 1.3.9:

S/I Soo

S2(−α)
⊕

S(−γ)
⊕

S(−δ)

oo

S(−2α)
⊕

S2(−α− γ)
⊕

S2(−α− δ)
⊕

S(−γ − δ)

oo

S(−2α− γ)
⊕

S(−2α− δ)
⊕

S2(−α− γ − δ)

oo S(−2α− γ − δ)oo 0,oo
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and we have the corresponding nonzero Betti diagram entries,

β
(0)
0,0 = 1, β

(0)
1,α = 2, β

(0)
1,γ = 1, β

(0)
1,δ = 1,

β
(0)
2,2α = 1, β

(0)
2,α+γ = 2, β

(0)
2,α+δ = 2, β

(0)
2,γ+δ = 1,

β
(0)
3,2α+γ = 1, β

(0)
3,2α+δ = 1, β

(0)
3,α+γ+δ = 2, β

(0)
4,2α+γ+δ = 1.

Our first degree sequence is d0 = (0, α, 2α, 2α+γ, 2α+γ+δ). The corresponding elimination

matrix π(d0) has nonzero entries

π(d0)1,α =
1

α2(α+ γ)(α+ γ + δ)

π(d0)2,2α =
1

2α2γ(γ + δ)

π(d0)3,2α+γ =
1

γδ(α+ γ)(2α+ γ)
.

We need to find the largest x0 such that β(0) − x0π(d0) has entries that are greater than

or equal to 0. So, we need the largest x0 such that

x0 ≤ 2α2(α+ γ)(α+ γ + δ) = 2α4 + 4α3γ + 2α3δ + 2α2γ2 + 2α2γδ

x0 ≤ 2α2γ(γ + δ) = 2α2γ2 + 2α2γδ

x0 ≤ γδ(α+ γ)(2α+ γ) = 2α2γδ + 3αγ2δ + γ3δ.

It is clear that 2α2(α+ γ)(α+ γ + δ) = 2α2(α2 + 2αγ + αδ + γ2 + γδ) > 2α2(γ2 + γδ) =

2α2γ(γ+δ) since α2 +2αγ+αδ+γ2 +γδ > γ2 +γδ. It remains to compare 2α2γ(γ+δ) and

γδ(α+γ)(2α+γ). We do this by subtracting γδ(α+γ)(2α+γ) from 2α2(α+γ)(α+γ+δ):

2α2γ(γ + δ)− γδ(α+ γ)(2α+ γ) = 2α2γ2 + 2α2γδ − (2α2γδ + 3αγ2δ + γ3δ)

= 2α2γ2 + 2α2γδ − 2α2γδ − 3αγ2δ − γ3δ

= 2α2γ2 − 3αγ2δ − γ3δ

= γ2(2α2 − 3αδ − γδ).
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Since α < γ < δ, it follows that 2α2 < 2αδ. So 2α2 < 3αδ+γδ. Therefore 2α2−3αδ−γδ <

0. It follows that γ2(2α2 − 3αδ − γδ) < 0, and so 2α2γ(γ + δ) − γδ(α + γ)(2α + γ) < 0.

Thus 2α2γ(γ + δ) < γδ(α+ γ)(2α+ γ). So, we choose x0 = 2α2γ(γ + δ) as our coefficient

of π(d0). Let β(1) = β(0) − 2α2γ(γ + δ)π(d0). Then β(1) has nonzero entries

β
(1)
1,α =

2α(α+ 2γ + δ)

(α+ γ)(α+ γ + δ)

β
(1)
2,2α = 0

β
(1)
3,2α+γ =

γ(3αδ + γδ − 2α2)

δ(α+ γ)(2α+ γ)
.

Our next degree sequence is d1 = (0, α, α+ γ, 2α+ γ, 2α+ γ+ δ) and has a corresponding

elimination matrix π(d1) with nonzero entries

π(d1)1,α =
1

αγ(α+ γ)(α+ γ + δ)

π(d1)2,α+γ =
1

αγ(α+ γ)(α+ δ)

π(d1)3,2α+γ =
1

αδ(α+ γ)(2α+ γ)
.

Looking for the largest x1 such that β(1)−x1π(d1) has all entries that are greater than or

equal to 0, we need the largest x1 such that

x0 ≤ 2α2γ(α+ 2γ + δ)

x0 ≤ 2αγ(α+ γ)(α+ δ)

x0 ≤ αγ(3αδ + γδ − 2α2).

Notice that

2α2γ(α+2γ+δ) = αγ(2α2 +4αγ+2αδ) < αγ(2α2 +2αγ+2αδ+2γδ) = 2αγ(α+γ)(α+δ),
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since 2αγ < 2γδ. It remains to compare 2α2γ(α+ 2γ+ δ) and αγ(3αδ+ γδ− 2α2). We do

this by subtracting αγ(3αδ + γδ − 2α2) from 2α2γ(α+ 2γ + δ):

2α2γ(α+ 2γ + δ)− αγ(3αδ + γδ − 2α2) = αγ(2α2 + 4αγ + 2αδ)− αγ(3αδ + γδ − 2α2)

= αγ(4α2 + 4αγ − αδ − γδ)

= 4α3γ + 4α2γ2 − α2γδ − αγ2δ

= 4α2γ(α+ γ)− αγδ(α+ γ)

= αγ(4α− δ)(α+ γ).

Let’s look at the roots of this equation. Since 0 < α < γ, the only way that this

expression will be 0 is when 4α− δ = 0. So, we must consider three cases: (1) 4α = δ, (2)

4α < δ, and (3) 4α > δ. As it is unclear how to proceed from here, we leave the remaining

cases as future work and state the current results.

Corollary 3.2.5. Let S = k[x1, . . . , xd] be a polynomial ring over a field k and let I =

(f1, . . . , fd) be an ideal of S generated by a homogeneous regular sequence with deg(fi) = ei.

If d ≤ 3, then the Betti decomposition of S/I obtained from Algorithm 1.4.5 is completely

determined by the degrees e1, . . . , ed. In particular, for
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d = 1 : β(S/I) = e1 · π(0, e1)

d = 2 : β(S/I) = e1e2 · π(0, e1, e1 + e2) + e1e2 · π(0, e2, e1 + e2)

d = 3 : If e1 ≤ e2 ≤ e3, then

β(S/I) = e1e2(e2 + e3) · π(0, e1, e1 + e2, e1 + e2 + e3)
+e1e2(e3 − e1) · π(0, e2, e1 + e2, e1 + e2 + e3)
+2e1e2(e1 + e3 − e2) · π(0, e2, e1 + e3, e1 + e2 + e3)
+e1e2(e3 − e1) · π(0, e3, e1 + e3, e1 + e2 + e3)
+e1e2(e2 + e3) · π(0, e3, e2 + e3, e1 + e2 + e3)

d = 4 : If e1 = e2 = e3 = e4, then

β(S/I) = 24e1
4π(0, e1, 2e1, 3e1, 4e1)

If e1 = e2 = e3 < e4, then

β(S/I) = 6e1
3e4π(0, e1, 2e1, 3e1, 3e1 + e4)

+6e1
3e4π(0, e1, 2e1, 2e1 + e4, 3e1 + e4)

+6e1
3e4π(0, e1, e1 + e4, 2e1 + e4, 3e1 + e4)

+6e1
3e4π(0, e4, e1 + e4, 2e1 + e4, 3e1 + e4)

If e1 = e2 < e3 = e4, then

β(S/I) = 4e2
1e

2
4π(0, e1, 2e1, 2e1 + e4, 2e1 + 2e4)

+2e2
1e4(e1 + 3e4)π(0, e1, e1 + e4, 2e1 + e4, 2e1 + 2e4)

+4e2
1e4(e4 − e1)π(0, e4, e1 + e4, 2e1 + e4, 2e1 + 2e4)

+2e2
1e4(e1 + 3e4)π(0, e4, e1 + e4, e1 + 2e4, 2e1 + 2e4)

+4e2
1e

2
4π(0, e4, 2e4, e1 + 2e4, 2e1 + 2e4)

If e1 < e2 = e3 = e4, then

β(S/I) = 6e1e
3
4π(0, e1, e1 + e4, e1 + 2e4, e1 + 3e4)

+6e1e
3
4π(0, e4, e1 + e4, e1 + 2e4, e1 + 3e4)

+6e1e
3
4π(0, e4, 2e4, e1 + 2e4, e1 + 3e4)

+6e1e
3
4π(0, e4, 2e4, 3e4, e1 + 3e4).

Proof. This follows from [6], Proposition 3.2.1, Proposition 3.2.2, Proposition 3.2.3, and

Proposition 3.2.4.



4
Further directions

There is no question that this new and exciting area of research still has much to be

discovered. In particular, we find that both of our main questions from Section 1.2 remain

open. We state these questions here for convenience:

Question 1.2.1. Let R be a ring. Consider a short exact sequence of R-modules:

0 // A // B // C // 0.

Given the Betti decompositions of A and C, what can we conclude about the Betti decom-

position of B?

Question 1.2.2. Let S = k[x1, . . . , xd] be a polynomial ring over a field k and let I =

(f1, . . . , fd) be an ideal of S generated by a homogeneous regular sequence with deg(fi) = ei.

What is the Betti decomposition of S/I in terms of the degrees ei?

In Section 2.1, we identify a class of Betti diagrams in which we can find the Betti

decomposition of the sum of two Betti diagrams by taking the sum of the Betti decom-

positions of the two Betti diagrams. This leads us to Proposition 2.2.4, which provides

an answer to Question 1.2.1 for modules with Betti diagrams that belong to the specific
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class of Betti diagrams from Section 2.1. However, it remains to find other classes of Betti

diagrams for which the Betti decomposition of the sum of Betti diagrams is the sum of the

Betti decompositions of Betti diagrams. These classes would allow us to make analogous

propositions to Proposition 2.2.4.

Another interesting direction is to consider the short exact sequence of modules, as

presented in Question 1.2.1, when B is not A⊕C. This would require the use of Macaulay2

[8] to examine different modules and their Betti decompositions.

In Section 3.2, we present the Betti decompositions of certain cases of complete intersec-

tions in codimension 4. It remains to consider the last four cases of complete intersections

in codimension 4:

(i) e1 = e2 < e3 < e4,

(ii) e1 < e2 = e3 < e4,

(iii) e1 < e2 < e3 = e4,

(iv) e1 < e2 < e3 < e4.

As we mentioned in Section 3.2, it is unclear how to proceed with the above cases. Another

strategy will need to be employed in order to tackle these cases, as well as cases of complete

intersections in higher codimension.
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