\documentclass[12pt]{article}
\usepackage{fullpage}
\begin{document}
\title{Mathematics 355 \\
Symbolic Logic}
\author{Dr. Stephen Bloch \\
office 114 Alumn\ae\ Hall \\
phone 877-4483 \\
email \texttt{sbloch@adelphi.edu} \\
Web page \texttt{http://www.adelphi.edu/sbloch/} \\
Class Web page \texttt{http://www.adelphi.edu/sbloch/class/355/} \\
Office hours: 4:30-5:15 TTh, 9:00-12:30 WF. \\
Other times by appointment.}
\maketitle
\section{Prerequisites}
This course assumes you have taken and passed CSC/MTH 156 (``Discrete
Structures'').
\section{Subject Matter}
Logic is a way to come to know a fact without observing it directly.
If your roommate always gets drunk on Saturday nights, and today
was Saturday, you don't have to smell your roommate's breath to
know that (s)he is drunk. There are, of course, many
more subtle applications of logic, and frequently it's not so obvious
what conclusions you can draw from what. The careful study of this
question, and the field of logic itself, dates approximately to
Aristotle. Aristotle's treatment of logic was so widely respected that
the field changed little for two thousand years, until the 19th century
when mathematicians like Boole, Frege, Peano, and Peirce cleaned it up
to roughly its present state.
Since logic, like other branches of mathematics, has trouble dealing
with ambiguous statements, and since English is a notoriously ambiguous
language, logicians (and other mathematicians) usually work in a
language of their own, in which every term and symbol has a clear,
well-defined meaning --- the ``language of first-order logic'', or
\textsc{FOL} as the textbook calls it.
We'll start by examining \emph{relations}, properties that can be
either true or false of specific objects. Relations can be combined using
\emph{Boolean connectives} such as ``not'', ``and'', ``or'',
``implies'', and ``iff'', and we'll discuss how to use, prove, and
disprove statements involving those connectives. Then we'll add
\emph{quantifiers} to the language, so we can talk about ``all'' objects
or ``at least one'' object, and discuss how to use, prove, and disprove
statements involving quantifiers. Finally, we'll visit some topics of
particular importance in computer science: mathematical induction
and computer theorem-proving (which underlies the Prolog programming
language).
\section{Text}
The main text for this course is \emph{Language Proof and Logic},
by Jon Barwise and John Etchemendy. We'll work through most of chapters
1--13, plus parts of chapters 16 and 17, by the end of the semester.
\textbf{You are responsible for everything
in the reading assignments, whether or not I discuss it in a lecture.}
The textbook comes with a CD-ROM
containing not only the full text of the book but a number of software
packages which you'll need in order to do your homework. The software
should run on either Macintosh or Windows; you may use whichever you
prefer. One of the software packages, ``Submit'', requires Net access
to submit your homework to an automatic grading program; an option in
the program allows you to submit the homework to me for a grade, or to
just check it so you can see what's incorrect and fix it \emph{before}
submitting it for a grade. Printed on the CD-ROM envelope is a ``Book
ID\#'', which you'll need in order to use the auto-grader, so don't lose
it.
\section{Grading}
As I write this, I plan to give seven homework assignments
(possibly more or fewer, depending on how the semester goes)
and a final exam, as well as a ``brownie point'' grade which is my
subjective impression of how seriously you're taking the course.
Each of these nine grades will be weighted roughly equally in
determining a semester grade.
You earn brownie points by asking good questions in class, coming to me
or the tutors for help when you need it, etc. You lose brownie points
by cheating, by being lost and not doing anything about it, and by
annoying the professor.
% These numeric grades will be converted to letter grades as follows:
% I'll draw a curve showing the distribution of numeric grades, and look
% for naturally-occurring ``clumps''. For each clump, especially the
% top and bottom ones, I'll examine some exam and
% homework papers to decide what letter grade seems appropriate. This
% method corrects for excessively hard or excessively easy assignments
% while not penalizing anybody for having genius classmates.
The exam must be taken at the scheduled time, unless arranged in advance
or prevented by a documented medical or family emergency. If you have
three or more exams scheduled on the same date, or
a religious holiday that conflicts with an exam or assignment due date,
please notify me in writing within the first two
weeks of the semester in order to receive due consideration.
% (and I'd
% prefer it if you let me know earlier --- you should know within the
% first week of class when all your exams are).
Exams not taken without one of
the above excuses will get a grade of 0.
Homework
assignments will be accepted late, with a penalty of 20\% per 24 hours
or portion thereof after they're due. An hour late is 20\% off, 25
hours late is 40\% off, and after five days it gets a zero. Any
homework turned in after the last day of class will get a zero.
\section{Ethics}
Most of the assignments in this class are to be done individually. You
may \emph{discuss general approaches} to a problem with classmates, but
you \emph{may not copy} large pieces of homework solutions.
If you do, \emph{all} the students involved will be penalized.
All work on an exam must be entirely the work of the one
person whose name is at the top of the page. If I have evidence that
one student copied from another on an exam, \emph{both} students will be
penalized; see above.
\section{Schedule}
This class meets every Tuesday and Thursday from 3:05 to 4:20 PM,
except on University holidays or if I cancel class.
%
% \subsection{Floating Events}
All dates in the following schedule are tentative, except those fixed
by the University; if some topic listed here as taking one lecture in
fact takes two lectures to cover adequately, or {\em vice versa},
the schedule will shift.
% In no case will an assignment be due earlier than indicated in the
% following schedule, but some may be due later; this will be announced
% in class a reasonable time in advance. I'll try to keep an updated
% version of this schedule available online.
I expect you to have read the specified chapters in the textbook
\emph{before} the lecture that deals with that topic; this way I can
concentrate my time on answering questions and clarifying subtle or
difficult points in the textbook, rather than on reading
to you, which will bore both of us. \textbf{Please read ahead!}
\end{document}
HW1 chaps 1,2
HW2 chaps 3,4
HW3 chaps 5,6
HW4 chaps 7,8
HW5 chaps 9,10
HW6 chaps 11-13
HW7 chaps 16,17