The Visitor Pattern and Lists

When we work with lists or arrays, we tend to find ourselves writing almost the same loop over and over.  For example, a common pattern is "do something to each element, producing a list of the corresponding results":


Given list L1,


let L2 = new list


for each element E of L1



add f(E) to the end of L2


return L2

Another common pattern is "test each element, keeping the elements that passed the test":


Given list L1,


let L2 = new list


for each element E of L1



if f(E)




add E to the end of L2


return L2

In each case, we find ourselves writing basically the same code over and over, differing only in the choice of f.  Good programmers are lazy, and don't like writing the same thing over and over, so


map(f, L1) {



let L2 = new list



for each element E of L1




add f(E) to the end of L2



return L2



}


filter(f,L1) {



let L2 = new list



for each element E of L1




if f(E)





add E to the end of L2



return L2



}

Now we can just call map or filter on whatever function we want to use, rather than writing the loop over and over.

Another common pattern is "initialize an accumulator, then update it for each element of the list":


given L1


let answer = initialValue


for each element E of L1



let answer = f(answer, E)

For example, if "f" were the addition function and initialValue were 0, this would add up the elements of a list.  If "f" were the "max" function and initialValue were -infinity, this would find the largest element of a list.  And so on.  Again, let's automate it:


fold (f, initialValue, L1) {



let answer = initialValue



for each element E of L1




let answer = f(answer, E)



return answer



}

Now we never again have to write a loop that fits this pattern; we can just call "fold" with the appropriate function and starting value.

In fact, even "map" and "filter" can be written using "fold":


map (f, L1) {



define g(E, oldList) {




construct & return a list whose first element is f(E)





and whose remaining elements are oldList




}



return fold (g, emptyList, L1)



}


filter (f, L1) {



define g(E, oldList) {




if f(E), construct & return a list from E and oldList




else return oldList




}



return fold (g, emptyList, L1)



}

So "fold" is pretty fundamental: if you have it, you can write map, and filter, and lots of other things.  This is called the Visitor pattern: "f" is a visitor, and "fold" allows you to use it to "visit" all the elements of the list.  A data structure (e.g. List) is said to be "visitable" if it provides a way for clients to visit all its elements without needing to know how the data structure is organized.
Let's try writing "fold" in a real language.

In Scheme,

(define (fold f base things)

    (if (empty? things)

        base

        (f (first things)

           (fold f base (rest things)))))

And in Java, 
interface FoldFunction <ResultType, ElementType> {

   ResultType invoke (ElementType firstElement, ResultType restResult);

   }

static <ResultType, ElementType> ResultType fold (FoldFunction<ResultType, ElementType> f, ResultType base, FunctionalList<ElementType> things) {

   if (things.isEmpty()) {

      return base;

      }

   else {

      return f.invoke(things.getFirst(), fold (f, base, things.getRest()));

      }

   }

In either case, we can then use fold to write things like add-up:

 (define (add-up numbers)

   (fold + 0 numbers))

static Integer addUp (FunctionalList<Integer> numbers) {

   return fold (new FoldFunction<Integer, Integer> () {

      Integer invoke (Integer firstElement, Integer restResult) {

         return firstElement + restResult;

         }},

      0, numbers);

   }

Likewise, we can use fold to write a function that tests whether a specified list contains a specified element:

(define (contains? things thing-to-find thing=?)

   (fold (lambda (first-thing rest-contained?)

               (or (thing=? first-thing thing-to-find) rest-contained?))

          false

          things))

class ContainsChecker<ElementType implements Comparable> implements FoldFunction<Boolean, ElementType> {

   private ElementType thingToFind;

   public ContainsChecker (ElementType thingToFind) {

      this.thingToFind = thingToFind;

      }

   public invoke (ElementType firstThing, boolean restContained) {

      return (this.ThingToFind.compareTo(firstThing) == 0 || restContained;

      }

   }

static boolean contains (List<String> things, String toFind) {

   return fold(new ContainsChecker<String> (toFind), false, things);

   }

This has a problem.  If you were writing "contains" from scratch, with your own loop, you would probably stop as soon as you found thingToFind.  But this version, and anything written using "fold", always checks every element of the list.  (Not a problem if you're working in a lazy language like Haskell, where the recursive call isn't actually evaluated unless somebody cares about its value.  Most of us are not working in Haskell.)

So in the interest of efficiency, we'd like the visitor function to be able to decide whether to do the recursive call.  Which means that we can't give f the result of the recursive call because we might not need to compute it; instead, we give f a way to get the result of the recursive call.  The most straightforward way to do this seems to be to give f a parameter of type function (of no arguments; such functions are called thunks) which, when called, produces the result of the recursive call.  If f chooses to call that function, it gets the result of the recursive call and can combine it as desired; if it chooses not to, it hasn't wasted any time computing a result it doesn't need.  We'll write a new version of fold, called lazy-fold, which works this way.
Lazy-fold is a little less convenient to use: for example, the "add-up" function becomes 

(define (add-up numbers)

   (lazy-fold (lambda (this-element compute-rest) (+ this-element (compute-rest)))

                   0 numbers))

interface Thunk <ResultType> {

   ResultType invoke ();

   }

interface LazyFoldFunction <ResultType, ElementType> {

   ResultType invoke (ElementType firstElement, Thunk <ResultType> computeRest);

   }

static Integer addUp (FunctionalList<Integer> numbers) {

   return lazyFold (new LazyFoldFunction<Integer, Integer> () {

      Integer invoke (Integer firstElement, Thunk<Integer> computeRest) {

         return firstElement + computeRest.invoke();

         }},

      0, numbers);

   }

But it should all work, and we can think about how to write lazy-fold itself.

In Scheme, 
(define (lazy-fold f base things)

   (if (empty? things)

       base

       (f (first things)

          (lambda () (lazy-fold f base (rest things))))))

In Java, …
interface Thunk <ResultType> {

   ResultType invoke ();

   }

interface LazyFoldFunction <ResultType, ElementType> {

   ResultType invoke (ElementType firstElement, Thunk <ResultType> computeRest);

   }

static <ResultType, ElementType> ResultType lazyFold (
final LazyFoldFunction<ResultType, ElementType> f,

final ResultType base,

final FunctionalList<ElementType> things) {

   if (things.isEmpty()) {

      return base;

      }

   else {

      return f.invoke(things.getFirst(), 



      new Thunk<ResultType>() {


                 ResultType invoke () {

                             return lazyFold (f, base, things.getRest()); }});

      }

   }

This is more powerful: we can now write a more efficient "contains" function as follows

(define (lazy-contains? things thing-to-find thing=?)

   (lazy-fold (lambda (first-thing rest-contained?)

                 
 (or (thing=? first-thing thing-to-find) (rest-contained?)))

          false

          things))

class LazyContainsChecker<ElementType implements Comparable>

implements LazyFoldFunction<Boolean, ElementType> {

   private ElementType thingToFind;

   public ContainsChecker (ElementType thingToFind) {

      this.thingToFind = thingToFind;

      }

   public invoke (ElementType firstThing, Thunk<Boolean> restContained) {

      return this.ThingToFind.compareTo(firstThing) == 0 || restContained.invoke());

      }

   }

static boolean lazyContains (List<String> things, String toFind) {

   return lazyFold(new LazyContainsChecker<String> (toFind), false, things);

   }

Since the "or" in Scheme and the "||" in Java are smart enough to not bother with their second argument if the first one is true, both of these lazy definitions stop as soon as they find what they're looking for.
This is still restrictive, however: it allows us to decide along the way when to stop recurring, but only based on the current element of the list, and all the actual computation is done "on the way up".  Often in real life, we want to decide when to stop, or what to do, based on things we've already seen.   Suppose, for example, we wanted to find all the unique elements of a list, discarding all after the first occurrence of each element.  The natural way to do this would be to build up a list of "things we've already seen" as we go through the list; for each element of the list, we check whether it's already been seen, and if so, we don't include it in the result.  (If not, we do include it in the result, and we also add it to the "list of things we've already seen".)  Neither fold nor lazy-fold allows us to do this; instead, we need a technique called accumulative recursion.

In accumulative recursion, the recursive function takes in an extra argument for "whatever computation we've already done."  Once we get to the base case, we usually don't just return a constant value, but rather construct an answer from "whatever computation we've already done".  We'll get back to this….

