CSC 160
Computer Programming

for Non-Majors
Day 16 (June 20, 2005)

Dr. Stephen Bloch
sbloch@adelphi.edu
http://www.adelphi.edu/sbloch/class/160/



Review

 New syntax rule allows "local" definitions
e Can use for both variables and functions

 Common applications:
— save recursive results to be used several times; improve
efficiency
— give names to intermediate results; improve readability

— hide things "outside world" doesn't need to know about;
improve modularization



Modularization

e Large project w/several programmers
e Each in charge of a "module" of the project

* For example, video game

— one module 1n charge of rules of game

— another module in charge of graphics, menus,
buttons, etc.



"Open" scenario

e Jim changes one of his auxiliary functions to
return a different type

e Julia, who was using Jim's auxiliary function in
her module, finds her module mysteriously stop
working

e Problem is hard to track down because Julia
doesn't even know Jim has changed the function



Information-hiding scenario

Each module has
— "public interface" (like a function contract & examples)
— "private implementation" (like a function body)

Each programmer knows only the "public interface" of
other programmers' modules

Jim's auxiliary function isn't in his public interface, so
nobody else is using it, so he can change it w/o screwing
up Julia's module

If Jim changes a publicly-known function, but it still
satisfies its public interface, it won't screw up Julia's
module



Interface vs. implementation

* Interface: "What you need to know in order
to use the function(s)"
How functions can be called & what they
should return.

* Implementation: "What you need to know
in order to write or fix the function(s)"
How functions compute the result



Interface vs. implementation:
Automobile analogy

 1nterface 1s steering wheel, pedals, gear shift...

e 1mplementation is engine, carburetor, spark plugs,

» If repair shop changes positions of pedals, you
have to learn how to drive again.

e If repair shop replaces spark plugs w/better model,
but steering wheel, pedals, etc. still work as
before, you don't have to change anything.



Review: operating on lists

; remove>10 : list-of-nums -> list-of-nums
(define (remove>10 nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cond [(> (first nums) 10) (remove>10 (rest nums))]
[else (cons (first nums) (remove>10 (rest nums)))])]))

"Examples of remove>10:"

(remove>10 empty) "should be" empty

(remove>10 (list 6)) "should be" (list 6)

(remove>10 (list 11)) "should be" empty

(remove>10 (list 6 11 10 -24 13 9)) "should be" (list 6 10 -24 9)
(remove>10 (list 11 10 -24 13 9)) "should be" (list 10 -24 9)



Review: generalizing the function

; remove>) : list-of-nums -> list-of-nums
; remove>17: list-of-nums -> list-of-nums

What these have in common is that they remove all elements of the list greater
than a fixed threshold.

So we generalize the function:
: remove-over: num list-of-nums -> list-of-nums
(define (remove-over threshold nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cond [(> (first nums)threshold) (remove-over threshold (rest nums))]
[else (cons (first nums) (remove-over threshold (rest nums)))])]))
"Examples of remove-over:"
(remove-over 6 empty) "should be" empty

(remove-over 3.5 (list4 9 17 2 6 3)) "should be" (list 2 3)



Generalizing the function farther

; remove<) : list-of-nums -> list-of-nums
; remove>=4: list-of-nums -> list-of-nums
; remove-evens : list-of-nums -> list-of-nums

What all of these have in common is that they perform a test on each element of
the list, and remove the ones that pass the test.

Generalization:
; remove-if : test list-of-nums -> list-of-nums

Q: What is a "test"?
A: a property that every number either has or doesn't have
A: a function from number to boolean

Note: change languages to Intermediate Student



Writing remove-if

; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)

)

"Examples of remove-if:"

(remove-if even? (list 1 234 5)) "should be" (list 1 3 5)

(define (over-10? x) (> x 10))

(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< X 5))

(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)



The routine stuff

; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cond [...
(remove-if test? (rest nums))]
[else
(cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 234 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< X 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)



Using the test

; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cond [(test? (first nums))
(remove-if test? (rest nums))]
[else
(cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 234 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< X 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)



Writing functions using remove-it

; remove<) : list-of-nums -> list-of-nums
(define (under-5? x) (< X 5))
(define (remove<5 nums) (remove-if under-5? nums))

; remove>=7: list-of-nums -> list-of-nums
You try this one.

; remove-evens : list-of-nums -> list-of-nums
(define (remove-evens nums) (remove-if even? nums))



Another example

: cube-each : list-of-nums -> list-of-nums
(define (cube-each nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cons (cube (first nums))
(cube-each (rest nums)))]))

"Examples of cube-each:"
(cube-each empty) "should be" empty
(cube-each (list 2)) "should be" (list 8)

(cube-each (list 3 -2 0 5 -6)) "should be"
(list 27 -8 0 125 -216)



Similar functions

; sqrt-each : list-of-nums -> list-of-nums
; negate-each : list-of-nums -> list-of-nums

What these have in common is that they do the same thing to
each element of a list, returning a list of the results.

So we generalize the functions:
; do-to-each : operation list-of-nums -> list-of-nums

What's an "operation"? In this case, a function from number
to number.

: do-to-each : (num -> num) list-of-nums -> list-of-nums



Writing do-to-each

; do-to-each : (num -> num) list-of-nums -> list-of-nums

(define (do-to-each op nums)
(cond [(empty? nums) empty]
[(cons? nums)
(cons (op (first nums))
(do-to-each op (rest nums)))]))

"Examples of do-to-each:"

(do-to-each cube (list 3 5 -2)) "should be" (list 27 125 -8)
(do-to-each sqrt (list 4 25 0)) "should be" (list 2 5 0)
(do-to-each - (list 3 -2 0 7.5)) "should be" (list -3 2 0 -7.5)



Writing functions using do-to-each

; sqrt-each : list-of-nums -> list-of-nums

(define (sqrt-each nums)
(do-to-each sqrt nums))

. add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))

(define (add-3-to-each nums)
(do-to-each add3 nums))



Generalizing the contract

Nothing in remove-if or do-to-each actually
depends on numbers

Real contracts are

; remove-1f : (X -> boolean) list-of-X -> list-
of-X

: do-to-each : (X -> X) list-of-X -> list-of-X
where X 1s any type



Writing functions using these

; fire-over-100K : list-of-emps -> list-of-emps
; Auxiliary function earns-over-100K? : emp -> boolean

(define (earns-over-100K? emp)
(> (emp-salary emp) 100000))

(define (fire-over-100K emps)
(remove-if earns-over-100K? emps))

; give-10%-raises: list-of-emps -> list-of-emps
; Auxiliary function give-10%-raise : emp ->emp
(define (give-10%-raise emp)

(make-emp (emp-name emp) (emp-id emp)
(* 1.1 (emp-salary emp))))

(define (give-10%-raises emps)
(do-to-each give-10%-raise emps))



Generalizing even farther

Nothing in do-to-each requires input and
output lists to be the same type

Real contract 1s
: do-to-each : (X ->Y) list-of-X -> list-of-Y

where X and Y are any two types, possibly the
same.



Writing

; extract-names

functions using this

list-of-emps -> list-of-strings

(define (extract-names emps)
(do-to-each emp-name emps))

"Example of extract-names:"

(extract-names
(list (make-emy
(make-em

b "Joe" 1 75000)
0 "Mary" 2 79995)

(make-em

5 "Phil" 3 26000)))

"should be" (list "Joe" "Mary" "Phil")



Dumb single-use functions

: add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums) (do-to-each add3 nums))

Better: hide add3 inside a local definition

(define (add-3-to-each nums)
(local [(define (add3 x) (+ x 3))]
(do-to-each add3 nums)))

Could do the same thing with earns-over-100K? and give-10% -raise



An example where we have to use local

: remove-over : num list-of-nums -> list-of-nums

(define (remove-over threshold nums)
(local [(define (over-threshold? num)

(> num threshold))]
(remove-1f over-threshold? nums)))

Note: we couldn't have defined over-threshold? outside
remove-over, because it would have depended on the
threshold value.



A trickier example

; add-up : list-of-nums -> num

; multiply-all : list-of-nums -> num

; largest : non-empty-list-of-nums ->num

; highest-paid : non-empty-list-of-emps -> emp
What these have in common 1s that they combine

pairs of objects to get a third object, repeatedly
until whole list has been combined

So we generalize. Note that in each case, we need
to know what value to start with...



A trickier example

; combine : X (X X -> X)) list-of-X -> X
(define (combine start-value combiner values)

)

"Examples of combine:"

(define (add-up nums)
(combine O + nums))

; insert standard test cases for add-up here

(define (multiply-all nums)
(combine 1 * nums))

; insert standard test cases for multiply-all here



A trickier example

(define (largest nums)
(local [(define (larger num]1 num?2)
(cond [(>num] num?2) numl ]

[else num?2]))]
(combine (first nums) larger (rest nums))))

; insert standard test cases for largest here

(define (highest-paid emps)
(local [(define (higher-paid empl emp2)
(cond [(> (emp-salary emp]) (emp-salary emp2)) empl |
[else emp2]))]
(combine (first emps) higher-paid (rest emps))))

; insert standard test cases for highest-paid here



A trickier example

In fact, there's no rule that the types of list elements and the
type of the result are the same...

;combine: Y (XY ->Y) list-of-X ->Y

For example,
; add-blue-dots : list-of-posns 1image (background) -> image

(define (add-blue-dots posns background)
(local [(define (add-blue-dot where background)

(add-colored-dot where "blue" background))]
(combine background add-blue-dot posns)))



Defining functions without names

(+3(*45))
doesn't require defining a variable to hold the value
of (* 4 35), and then adding 3 to it!

Why should add-3-to-each require defining a
function to add 3 to things, and then applying do-
to-each to it?

Note: change languages to Intermediate Student
with Lambda



Defining functions without names

New syntax rule:
(lambda (param param ...) expr)

constructs a function without a name and
returns it.

Example:

(define (add-3-to-each nums)
(do-to-each (lambda (x) (+ x 3)) nums))



Defining functions without names

* Anything you can do with lambda can also
be done with local; may be more readable
because things have names

* Anything you can do with local can also be
done with lambda, often a little shorter



