
CSC 160
Computer Programming

for Non-Majors
Day 16 (June 20, 2005)

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/160/

Review

• New syntax rule allows "local" definitions
• Can use for both variables and functions
• Common applications:

– save recursive results to be used several times; improve
efficiency

– give names to intermediate results; improve readability
– hide things "outside world" doesn't need to know about;

improve modularization

Modularization

• Large project w/several programmers
• Each in charge of a "module" of the project
• For example, video game

– one module in charge of rules of game
– another module in charge of graphics, menus,

buttons, etc.

"Open" scenario

• Jim changes one of his auxiliary functions to
return a different type

• Julia, who was using Jim's auxiliary function in
her module, finds her module mysteriously stop
working

• Problem is hard to track down because Julia
doesn't even know Jim has changed the function

Information-hiding scenario

• Each module has
– "public interface" (like a function contract & examples)
– "private implementation" (like a function body)

• Each programmer knows only the "public interface" of
other programmers' modules

• Jim's auxiliary function isn't in his public interface, so
nobody else is using it, so he can change it w/o screwing
up Julia's module

• If Jim changes a publicly-known function, but it still
satisfies its public interface, it won't screw up Julia's
module

Interface vs. implementation

• Interface: "What you need to know in order
to use the function(s)"
How functions can be called & what they
should return.

• Implementation: "What you need to know
in order to write or fix the function(s)"
How functions compute the result

Interface vs. implementation:
Automobile analogy

• interface is steering wheel, pedals, gear shift…
• implementation is engine, carburetor, spark plugs,

…
• If repair shop changes positions of pedals, you

have to learn how to drive again.
• If repair shop replaces spark plugs w/better model,

but steering wheel, pedals, etc. still work as
before, you don't have to change anything.

Review: operating on lists
; remove>10 : list-of-nums -> list-of-nums
(define (remove>10 nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums) 10) (remove>10 (rest nums))]
 [else (cons (first nums) (remove>10 (rest nums)))])]))

"Examples of remove>10:"
(remove>10 empty) "should be" empty
(remove>10 (list 6)) "should be" (list 6)
(remove>10 (list 11)) "should be" empty
(remove>10 (list 6 11 10 -24 13 9)) "should be" (list 6 10 -24 9)
(remove>10 (list 11 10 -24 13 9)) "should be" (list 10 -24 9)

Review: generalizing the function
; remove>5 : list-of-nums -> list-of-nums
; remove>17: list-of-nums -> list-of-nums
What these have in common is that they remove all elements of the list greater

than a fixed threshold.
So we generalize the function:
; remove-over: num list-of-nums -> list-of-nums
(define (remove-over threshold nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums)threshold) (remove-over threshold (rest nums))]
 [else (cons (first nums) (remove-over threshold (rest nums)))])]))
"Examples of remove-over:"
(remove-over 6 empty) "should be" empty
…
(remove-over 3.5 (list 4 9 17 2 6 3)) "should be" (list 2 3)

Generalizing the function farther
; remove<5 : list-of-nums -> list-of-nums
; remove>=4: list-of-nums -> list-of-nums
; remove-evens : list-of-nums -> list-of-nums

What all of these have in common is that they perform a test on each element of
the list, and remove the ones that pass the test.

Generalization:
; remove-if : test list-of-nums -> list-of-nums

Q: What is a "test"?
A: a property that every number either has or doesn't have
A: a function from number to boolean

Note: change languages to Intermediate Student

Writing remove-if
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 …

)
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

The routine stuff
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond […
 (remove-if test? (rest nums))]
 [else
 (cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

Using the test
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(test? (first nums))
 (remove-if test? (rest nums))]
 [else
 (cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

Writing functions using remove-if
; remove<5 : list-of-nums -> list-of-nums
(define (under-5? x) (< x 5))
(define (remove<5 nums) (remove-if under-5? nums))

; remove>=7: list-of-nums -> list-of-nums
You try this one.

; remove-evens : list-of-nums -> list-of-nums
(define (remove-evens nums) (remove-if even? nums))

Another example
; cube-each : list-of-nums -> list-of-nums
(define (cube-each nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (cube (first nums))
 (cube-each (rest nums)))]))

"Examples of cube-each:"
(cube-each empty) "should be" empty
(cube-each (list 2)) "should be" (list 8)
(cube-each (list 3 -2 0 5 -6)) "should be"

(list 27 -8 0 125 -216)

Similar functions
; sqrt-each : list-of-nums -> list-of-nums
; negate-each : list-of-nums -> list-of-nums
What these have in common is that they do the same thing to

each element of a list, returning a list of the results.
So we generalize the functions:
; do-to-each : operation list-of-nums -> list-of-nums

What's an "operation"? In this case, a function from number
to number.

; do-to-each : (num -> num) list-of-nums -> list-of-nums

Writing do-to-each
; do-to-each : (num -> num) list-of-nums -> list-of-nums
(define (do-to-each op nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (op (first nums))
 (do-to-each op (rest nums)))]))

"Examples of do-to-each:"
(do-to-each cube (list 3 5 -2)) "should be" (list 27 125 -8)
(do-to-each sqrt (list 4 25 0)) "should be" (list 2 5 0)
(do-to-each - (list 3 -2 0 7.5)) "should be" (list -3 2 0 -7.5)

Writing functions using do-to-each

; sqrt-each : list-of-nums -> list-of-nums
(define (sqrt-each nums)

(do-to-each sqrt nums))

; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums)

(do-to-each add3 nums))

Generalizing the contract

Nothing in remove-if or do-to-each actually
depends on numbers

Real contracts are
; remove-if : (X -> boolean) list-of-X -> list-

of-X
; do-to-each : (X -> X) list-of-X -> list-of-X
where X is any type

Writing functions using these
; fire-over-100K : list-of-emps -> list-of-emps
; Auxiliary function earns-over-100K? : emp -> boolean
(define (earns-over-100K? emp)

(> (emp-salary emp) 100000))
(define (fire-over-100K emps)

(remove-if earns-over-100K? emps))

; give-10%-raises: list-of-emps -> list-of-emps
; Auxiliary function give-10%-raise : emp -> emp
(define (give-10%-raise emp)

(make-emp (emp-name emp) (emp-id emp)
 (* 1.1 (emp-salary emp))))

(define (give-10%-raises emps)
(do-to-each give-10%-raise emps))

Generalizing even farther

Nothing in do-to-each requires input and
output lists to be the same type

Real contract is
; do-to-each : (X -> Y) list-of-X -> list-of-Y
where X and Y are any two types, possibly the

same.

Writing functions using this
; extract-names : list-of-emps -> list-of-strings
(define (extract-names emps)

(do-to-each emp-name emps))

"Example of extract-names:"
(extract-names

(list (make-emp "Joe" 1 75000)
 (make-emp "Mary" 2 79995)
 (make-emp "Phil" 3 26000)))
"should be" (list "Joe" "Mary" "Phil")

Dumb single-use functions
; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums) (do-to-each add3 nums))

Better: hide add3 inside a local definition
(define (add-3-to-each nums)

(local [(define (add3 x) (+ x 3))]
 (do-to-each add3 nums)))

Could do the same thing with earns-over-100K? and give-10%-raise

An example where we have to use local

; remove-over : num list-of-nums -> list-of-nums
(define (remove-over threshold nums)

(local [(define (over-threshold? num)
 (> num threshold))]
 (remove-if over-threshold? nums)))

Note: we couldn't have defined over-threshold? outside
remove-over, because it would have depended on the
threshold value.

A trickier example

; add-up : list-of-nums -> num
; multiply-all : list-of-nums -> num
; largest : non-empty-list-of-nums -> num
; highest-paid : non-empty-list-of-emps -> emp
What these have in common is that they combine

pairs of objects to get a third object, repeatedly
until whole list has been combined

So we generalize. Note that in each case, we need
to know what value to start with…

A trickier example
; combine : X (X X -> X) list-of-X -> X
(define (combine start-value combiner values)

…)

"Examples of combine:"
(define (add-up nums)

(combine 0 + nums))
; insert standard test cases for add-up here

(define (multiply-all nums)
(combine 1 * nums))

; insert standard test cases for multiply-all here

A trickier example
(define (largest nums)

(local [(define (larger num1 num2)
 (cond [(> num1 num2) num1]
 [else num2]))]
 (combine (first nums) larger (rest nums))))

; insert standard test cases for largest here

(define (highest-paid emps)
(local [(define (higher-paid emp1 emp2)
 (cond [(> (emp-salary emp1) (emp-salary emp2)) emp1]
 [else emp2]))]
 (combine (first emps) higher-paid (rest emps))))

; insert standard test cases for highest-paid here

A trickier example
In fact, there's no rule that the types of list elements and the

type of the result are the same…
; combine : Y (X Y -> Y) list-of-X -> Y

For example,
; add-blue-dots : list-of-posns image (background) -> image
(define (add-blue-dots posns background)

(local [(define (add-blue-dot where background)
 (add-colored-dot where "blue" background))]
 (combine background add-blue-dot posns)))

Defining functions without names

(+ 3 (* 4 5))
doesn't require defining a variable to hold the value

of (* 4 5), and then adding 3 to it!
Why should add-3-to-each require defining a

function to add 3 to things, and then applying do-
to-each to it?

Note: change languages to Intermediate Student
with Lambda

Defining functions without names

New syntax rule:
(lambda (param param …) expr)
constructs a function without a name and

returns it.
Example:
(define (add-3-to-each nums)

(do-to-each (lambda (x) (+ x 3)) nums))

Defining functions without names

• Anything you can do with lambda can also
be done with local; may be more readable
because things have names

• Anything you can do with local can also be
done with lambda, often a little shorter

