
CSC 270
Survey of Programming

Languages
Sept. 24, 2009

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/270/

Recall "largest" function

; largest : non-empty-list-of-numbers -> number
(define (largest nums)

(cond [(empty? (rest nums)) (first nums)]
 [(cons? (rest nums))
 (cond [(>= (first nums) (largest (rest nums)))
 (first nums)]
 [else
 (largest (rest nums))])
]))

Performance issues

(largest (list 20 19 18 17 … 3 2 1)) returns 20
instantly

(largest (list 1 2 3 … 17 18 19 20)) returns 20 after
40 seconds!

To find out what's wrong, let's step through
(largest (list 1 2 3 4))

We're solving the same problem over and over!

• (largest (list 1 2 3 4))
– (largest (list 2 3 4))

• (largest (list 3 4))
– (largest (list 4)) = 4
– 3 isn't >= 4, so ….
– (largest (list 4)) = 4
– return 4

• 2 isn't >= 4, so…
• (largest (list 3 4))

– (largest (list 4)) = 4
– 3 isn't >= 4, so ….
– (largest (list 4)) = 4
– return 4

• return 4
– 1 isn't >= 4, so…
– (largest (list 2 3 4))

• (largest (list 3 4))
– (largest (list 4)) = 4 etc. etc.

A new syntax rule
(local [definition definition …]

expression
Example:
(local [(define x 7)]

(+ x 5))
"should be" 12
x "is now undefined again"

More examples of local
(define bignum 1234567890)
(local [(define bignum 5)]

(* bignum bignum bignum))
"should be" 125
bignum "should be" 1234567890 "again"

Using this to improve "largest"

; largest : non-empty-list-of-numbers -> number
(define (largest nums)

(cond [(empty? (rest nums)) (first nums)]
 [(cons? (rest nums))
 (local [(define biggest-of-rest (largest (rest nums)))]
 (cond [(>= (first nums) biggest-of-rest)
 (first nums)]
 [else
 biggest-of-rest]))
]))

Another approach to "largest"

; larger : num num -> num
…
"Examples of larger:"
(check-expect (larger 5 2) 5)
(check-expect (larger 2 5) 5)
(check-expect (larger 4 4) 4)

; largest : non-empty-list-of-numbers -> number
(define (largest nums)

(cond [(empty? (rest nums)) (first nums)]
 [(cons? (rest nums))
 (larger (first nums) (largest (rest nums)))
]))

If we didn't need "larger" anywhere else…

; largest : non-empty-list-of-numbers -> number
(define (largest nums)

(local [(define (larger x y)
 (cond [(>= x y) x] [else y]))]
 (cond [(empty? (rest nums)) (first nums)]
 [(cons? (rest nums))
 (larger (first nums) (largest (rest nums)))
])))

Review

• New syntax rule allows "local" definitions
• Can use for variables, functions, even structs
• Common applications:

– save recursive results to be used several times; improve
efficiency

– give names to intermediate results; improve readability
– hide things "outside world" doesn't need to know about;

improve modularization

Review: operating on lists
; remove>10 : list-of-nums -> list-of-nums
(define (remove>10 nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums) 10) (remove>10 (rest nums))]
 [else (cons (first nums) (remove>10 (rest nums)))])]))

(check-expect (remove>10 empty) empty)
(check-expect (remove>10 (list 6)) (list 6))
(check-expect (remove>10 (list 11)) empty)
(check-expect (remove>10 (list 6 11 10 -24 13 9)) (list 6 10 -24 9))
(check-expect (remove>10 (list 11 10 -24 13 9)) (list 10 -24 9))

Review: generalizing the function
; remove>5 : list-of-nums -> list-of-nums
; remove>17: list-of-nums -> list-of-nums
What these have in common is that they remove all elements of the list greater

than a fixed threshold.
So we generalize the function:
; remove-over: num list-of-nums -> list-of-nums
(define (remove-over threshold nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums) threshold) (remove-over threshold (rest nums))]
 [else (cons (first nums) (remove-over threshold (rest nums)))])]))
"Examples of remove-over:"
(check-expect (remove-over 6 empty) empty)
…
(check-expect (remove-over 3.5 (list 4 9 17 2 6 3)) (list 2 3))

Generalizing the function farther
; remove<5 : list-of-nums -> list-of-nums
; remove>=4: list-of-nums -> list-of-nums
; remove-evens : list-of-nums -> list-of-nums

What all of these have in common is that they perform a test on each element of
the list, and remove the ones that pass the test.

Generalization:
; remove-if : test list-of-nums -> list-of-nums

Q: What is a "test"?
A: a property that every number either has or doesn't have
A: a function from number to boolean

Note: change languages to Intermediate Student or PLAI

Defining remove-if
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(test? (first nums))
 (remove-if test? (rest nums))]
 [else
 (cons (first nums) (remove-if test? (rest nums)))])]))
(check-expect (remove-if even? (list 1 2 3 4 5)) (list 1 3 5))
(define (over-10? x) (> x 10))
(check-expect(remove-if over-10? (list 3 12 10 5 16 -24 6)) (list 3 10 5 -24 6))
(define (under-5? x) (< x 5))
(check-expect (remove-if under-5? (list 3 12 10 5 16 -24 6)) (list 12 10 5 16 6))

Writing functions using remove-if

; remove<5 : list-of-nums -> list-of-nums
(define (under-5? x) (< x 5))
(define (remove<5 nums) (remove-if under-5? nums))

; remove-evens : list-of-nums -> list-of-nums
(define (remove-evens nums) (remove-if even? nums))

Actually, we don't need to write this…

There's a built-in function
filter : (X -> boolean) list-of-X -> list-of-X
that does basically the same thing, except it

keeps the items that pass the test, rather than
removing the items that pass the test.

Another example
; cube-each : list-of-nums -> list-of-nums
(define (cube-each nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (cube (first nums))
 (cube-each (rest nums)))]))

(check-expect (cube-each empty) empty)
(check-expect (cube-each (list 2)) (list 8))
(check-expect (cube-each (list 3 -2 0 5 -6)) (list 27 -8 0 125 -

216))

Similar functions
; sqrt-each : list-of-nums -> list-of-nums
; negate-each : list-of-nums -> list-of-nums
What these have in common is that they do the same thing to

each element of a list, returning a list of the results.
So we generalize the functions:
; do-to-each : operation list-of-nums -> list-of-nums

What's an "operation"? In this case, a function from number
to number.

; do-to-each : (num -> num) list-of-nums -> list-of-nums

Writing do-to-each
; do-to-each : (num -> num) list-of-nums -> list-of-nums
(define (do-to-each op nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (op (first nums))
 (do-to-each op (rest nums)))]))

(check-expect (do-to-each cube (list 3 5 -2)) (list 27 125 -8))
(check-expect (do-to-each sqrt (list 4 25 0)) (list 2 5 0))
(check-expect (do-to-each - (list 3 -2 0 7.5)) (list -3 2 0 -7.5))

Writing functions using do-to-each

; sqrt-each : list-of-nums -> list-of-nums
(define (sqrt-each nums)

(do-to-each sqrt nums))

; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums)

(do-to-each add3 nums))

Generalizing the contract

Nothing in remove-if or do-to-each actually
depends on numbers

Real contracts are
; remove-if : (X -> boolean) list-of-X -> list-

of-X
; do-to-each : (X -> X) list-of-X -> list-of-X
where X is any type

Writing functions using these
; fire-over-100K : list-of-emps -> list-of-emps
; Auxiliary function earns-over-100K? : emp -> boolean
(define (earns-over-100K? emp)

(> (emp-salary emp) 100000))
(define (fire-over-100K emps)

(remove-if earns-over-100K? emps))

; give-10%-raises: list-of-emps -> list-of-emps
; Auxiliary function give-10%-raise : emp -> emp
(define (give-10%-raise emp)

(make-emp (emp-name emp) (emp-id emp)
 (* 1.1 (emp-salary emp))))

(define (give-10%-raises emps)
(do-to-each give-10%-raise emps))

Pop quiz

• What other functions did you write on HW2
that could have been written using do-to-
each or remove-if?

Generalizing even farther

Nothing in do-to-each requires input and
output lists to be the same type

Real contract is
; do-to-each : (X -> Y) list-of-X -> list-of-Y
where X and Y are any two types, possibly the

same.

Writing functions using this
; extract-names : list-of-emps -> list-of-strings
(define (extract-names emps)

(do-to-each emp-name emps))

"Example of extract-names:"
(check-expect (extract-names

(list (make-emp "Joe" 1 75000)
 (make-emp "Mary" 2 79995)
 (make-emp "Phil" 3 26000)))
(list "Joe" "Mary" "Phil"))

We don't need to write this…

There's a built-in function
map : (X -> Y) list-of-X -> list-of-Y
that does basically the same thing.

Actually, it works with multiple lists:
map : (X1 X2 X3 -> Y) list-of-X1 list-of-X2

list-of-X3 -> list-of-Y

Dumb single-use functions
; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums) (map add3 nums))

Better: hide add3 inside a local definition
(define (add-3-to-each nums)

(local [(define (add3 x) (+ x 3))]
 (map add3 nums)))

Could do the same thing with earns-over-100K? and give-10%-raise

An example where we have to use local

; remove-over : num list-of-nums -> list-of-nums
(define (remove-over threshold nums)

(local [(define (over-threshold? num)
 (> num threshold))]
 (remove-if over-threshold? nums)))

Note: we couldn't have defined over-threshold? outside
remove-over, because it would have depended on the
threshold value.

A trickier example

; add-up : list-of-nums -> num
; multiply-all : list-of-nums -> num
; largest : non-empty-list-of-nums -> num
; highest-paid : non-empty-list-of-emps ->

emp

A trickier example
On list '(a b c d e), all of these functions compute

f(a,f(b,f(c,f(d,f(e,BASE)))))
where BASE is the answer to the empty case.
The functions differ only in "f" and "BASE".

All these functions combine pairs of objects to get a
third object, repeatedly until whole list has been
combined

So we generalize.

A trickier example
; combine : (X X -> X) X list-of-X -> X
(define (combine combiner base-value values)

…)

(define (add-up nums)
(combine + 0 nums))

; insert standard test cases for add-up here

(define (multiply-all nums)
(combine * 1 nums))

; insert standard test cases for multiply-all here

A trickier example
; convert-reversed : list-of-nums -> num
(define (convert-reversed digits)
 (local ((define (add-digit d v) (+ d (* 10 v))))

(combine add-digit 0 digits)))
; insert standard test cases for convert-reversed here

A trickier example
(define (largest nums)

(local [(define (larger num1 num2)
 (cond [(> num1 num2) num1]
 [else num2]))]
 (combine larger (first nums) (rest nums))))

; insert standard test cases for largest here

(define (highest-paid emps)
(local [(define (higher-paid emp1 emp2)
 (cond [(> (emp-salary emp1) (emp-salary emp2)) emp1]
 [else emp2]))]
 (combine higher-paid (first emps) (rest emps))))

; insert standard test cases for highest-paid here

A trickier example
In fact, there's no rule that the types of list elements and the

type of the result are the same…
; combine : Y (X Y -> Y) list-of-X -> Y

For example,
; add-blue-dots : list-of-posns image (background) -> image
(define (add-blue-dots posns background)

(local [(define (add-blue-dot where background)
 (add-colored-dot where "blue" background))]
 (combine add-blue-dot background posns)))

We don't need to write this…

There's a built-in function
foldr : (X Y -> Y) Y list-of-X -> Y
that does basically the same thing.

Actually, it works with multiple lists:
foldr : (X1 X2 X3 Y -> Y) Y list-of-X1 list-of-

X2 list-of-X3 -> Y

Defining functions without names

(+ 3 (* 4 5))
doesn't require defining a variable to hold the value

of (* 4 5), and then adding 3 to it!
Why should add-3-to-each require defining a

function to add 3 to things, and then applying do-
to-each to it?

Note: change languages to Intermediate Student
with Lambda or PLAI

Defining functions without names

New syntax rule:
(lambda (param param …) expr)
constructs a function without a name and

returns it.
Example:
(define (add-3-to-each nums)

(do-to-each (lambda (x) (+ x 3)) nums))

Defining functions without names

• Anything you can do with lambda can also
be done with local; may be more readable
because things have names

• Anything you can do with local can also be
done with lambda, often a little shorter

Can also write functions that return
functions as values

; make-adder : number -> (number -> number)

"Examples of make-adder:"
(make-adder 3) "should be a function that

adds 3"
((make-adder 3) 5) "should be 8"
(do-to-each (make-adder -1) (list 5 2 -4 6))

"should be" (list 4 1 -5 5)

Can also write functions that return
functions as values

; make-adder : number -> (number -> number)
(define (make-adder increment)

(local [(define (f num)
 (+ num increment))]
 f))

Can also write functions that return
functions as values

; make-adder : number -> (number -> number)
(define (make-adder increment)

(local [(define (f num)
 (+ num increment))]
 f))

; Alternate definition:
(define (make-adder increment)

(lambda (num) (+ num increment)))

Can also write functions that return
functions as values

Project 1 requires you to write a function
that returns a function.

HW3 will have several exercises of this
kind.

