
Picturing Programs

An introduction to computer programming

Stephen Bloch

September 17, 2009

Part III

Definition by parts

259

Chapter 22

Animations and posns

22.1 The posn data type

Recall Exercise 19.2.1, in which a picture moved left or right in response to the
left and right arrow keys, respectively. An obvious modification would be to
have it move up or down in response to those arrow keys; this could be easily
done by deciding that the model represented the y coordinate rather than the x

coordinate. So how would we combine these two, allowing the picture to move
up, down, left, and right in response to the appropriate arrow keys?

This is harder than it seems at first. For the left/right animation, our model
was the x coordinate of the picture; for the up/down animation, it would be the
y coordinate. But if the picture is to move in both dimensions, the model needs
to “remember” both the x and y coordinates; it needs to hold two numbers at
once.

Before explaining how to do this in Scheme, let me give an analogy. Last
week I went to the grocery store. I like grapefruit, so I picked up a grapefruit
in my hand. Then another grapefruit in my other hand. Then another, which
I sorta cradled in my elbow... and another, and another, and a quart of milk,
and a pound of butter. I made my way to the checkout counter, dumped them
all on the conveyor belt, paid for them, picked them up, cradling them one by
one between my arms, and carried them precariously out to the car.

What’s wrong with this picture? Any sensible person would say “don’t carry
them all individually; put them in a bag!” It’s easier to carry one bag (which
in turn holds five grapefruit, a quart of milk, and a pound of butter) than to
carry all those individual items loose.

The same thing happens in computer programming: it’s frequently more
convenient to combine several pieces of information in a package than to deal
with them all individually. In particular, if we want an animation to “remember”
both an x and a y coordinate (or, as we’ll see in the next chapter, any two or
more pieces of information), we need to package them up into a single object
that can be “the model”.

261

262

Since (x, y) coordinate pairs are so commonly used in computer program-
ming, DrScheme provides a built-in data type named posn (short for “position”)
to represent them. A posn can be thought of as a box with two compartments
labelled x and y, each of which can hold a number. There are four predefined
functions involving posns:

; make-posn : number(x) number(y) -> posn

; posn-x : posn -> number(x)

; posn-y : posn -> number(y)

; posn? : anything -> boolean

To create a posn, we call the make-posn function, telling it what numbers
to put in the x compartment and the y compartment: (make-posn 7 12),
for example, creates and returns a posn whose x coordinate is 7 and whose y

coordinate is 12. For convenience in playing with it, however, we’ll store it in a
variable. Type the following into the DrScheme Interactions pane:

(define where (make-posn 7 12))

(check-expect where (make-posn 7 12))

Now we can use the posn-x function to retrieve the x coordinate, and posn-y

to retrieve the y coordinate:

(check-expect (posn-x where) 7)

(check-expect (posn-y where) 12)

This may not look very exciting — after all, we just put 7 and 12 into the x

and y compartments, so it’s not surprising that we can get 7 and 12 out of them.
But in a realistic program, the numbers would come from one place (perhaps
the user providing arguments to a function, or clicking a mouse) and be used in
a completely different place (such as a redraw handler).

Practice Exercise 22.1.1 Create (in the Interactions pane) several variables
containing different posns. Extract their x and y coordinates and make sure they
are what you expected.

Common pitfalls

I’ve seen a lot of students write things like

(make-posn here)

(posn-x 7)

(posn-y 12)

(do-something-with here)

I know exactly what the student was thinking: “First I create a posn named
here, then I say that its x coordinate is 7, and its y coordinate is 12, and then
I can use it.” Unfortunately, this isn’t the way the functions actually work: the
make-posn function does not define a new variable, and the posn-x and posn-y

functions don’t change the x and y coordinates of “the” posn.
To put it another way, the above example doesn’t obey the contracts. The

make-posn function does not take in a posn, much less a new variable name; it

263

takes in two numbers, and returns a posn. The posn-x and posn-y functions
do not take in a number; they take in a posn and return a number. A correct
way to do what this student meant is

(define here (make-posn 7 12))

(do-something-with here)

or, more simply,

(do-something-with (make-posn 7 12))

22.2 Definition by parts

In Chapter 16 we learned about “defining a new data type by choices,” and in
Chapter 20 we saw more examples of definition by choices, of the form “a W is
either an X, a Y, or a Z,” where X, Y, and Z are previously-defined types. For
example, a key can be defined as “either a char or a symbol.”

Another way to define a new data type from previously-defined types is
“definition by parts,” and posns are our first example. A posn has two parts,
both of which are numbers (a previously-defined type). In Chapter 23, we’ll see
more examples of definition by parts.

22.3 Design recipe for functions involving posns

Suppose the contract for a function specifies that it takes in a posn.
The data analysis (at least for the posn parameter) is already done: a posn

consists of two numbers, x and y. (Although we may have more to say about
the numbers themselves, or about other parameters, or about the output type.)

The examples will require creating some posns on which to call the function.
There are two common ways to do this: either store the posn in a variable, as
above, and use the variable name as the function argument, or use a call to
make-posn as the function argument. Both are useful: the former if you’re
going to use the same posn in several different test cases, and the latter if
you’re just making up one-shot examples.

(define where (make-posn 7 12))

(check-expect (function-on-posn where) ...)

(check-expect (function-on-posn (make-posn 19 5)) ...)

The skeleton and inventory will look familiar, with the addition of a few
expressions you’re likely to need in the body:

(define (function-on-posns the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

...)

264

So here’s a complete template for functions taking in a posn

#| (define where (make-posn 7 12))

(check-expect (function-on-posn where) ...)

(check-expect (function-on-posn (make-posn 19 5)) ...)

(define (function-on-posns the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

...)

|#

In writing the body, you can now use the-posn directly, and (more com-
monly) you can use the expressions (posn-x the-posn) and (posn-y the-posn)

to refer to its individual coordinates.

22.4 Writing functions on posns

So now let’s write some actual functions involving posns.

Worked Exercise 22.4.1 Develop a function named right-of-100? which
takes in a posn representing a point on the screen, and tells whether it is to the
right of the vertical line x = 100. (For example, we might have a 200-pixel-wide
window, and want to do one thing for positions in the right half and something
else for positions in the left half.)

(One might reasonably ask “This function only actually depends on the x

coordinate; why does it take in a posn?” There are at least two answers. First,
sometimes the program has a posn handy, and doesn’t want to take the extra
step of extracting the x coordinate from it to pass to right-of-100?. Second
and more important, what the function depends on is the function’s business,
not the business of whoever is calling it. I shouldn’t have to think about how
to solve a problem myself in order to call a function whose job is to solve that
problem. I should instead give the function whatever information it might need,
and it will pick out the parts that it does need.)

Solution: The contract is

; right-of-100? : posn -> boolean

Data analysis: there’s not much to say about the output type, boolean,
except that it has two values, so we’ll need at least two examples. The input
type is posn, which consists of two numbers x and y. Of these, we’re only
interested in the x coordinate for this problem; in particular, we’re interested in
how the x coordinate compares with 100. It could be smaller, greater, or equal,
so we’ll actually need three examples: one with x < 100, one with x = 100, and

265

one with x > 100. Note that although this function doesn’t actually use the y

coordinate, it still has to be there.

(check-expect (right-of-100? (make-posn 75 123)) false)

(check-expect (right-of-100? (make-posn 100 123)) false)

; borderline case

(check-expect (right-of-100? (make-posn 102 123)) true)

The template gives us most of the skeleton and inventory, to which we add
the number 100 because it’s hard to imagine solving this problem without it.

(define (right-of-100? the-posn)

; the-posn a posn

; (posn-x the-posn) a number (the x coordinate)

; (posn-y the-posn) another number (the y coordinate)

; 100 a fixed number we’ll need

...)

Body: We don’t actually need (posn-y where) in this problem, so we can
drop it from the inventory. Of the remaining available expressions, there’s a
posn and two numbers. The obvious question to ask is whether one of those
numbers (the x coordinate) is larger than the other (100):

(> (posn-x where) 100)

This expression returns a Boolean, so we could use it in a cond to make a deci-
sion. . . but this function is supposed to return a Boolean, so a cond is probably
overkill. In fact, if this expression is true, the right answer from the function is
true, and if this expression is false, the right answer is false, so we can just use
this expression itself as the body:

(define (right-of-100? where)

; where a posn

; (posn-x where) a number(x)

; (posn-y where) a number(y)---------------------------

; 100 a fixed number we know we’ll need

(> (posn-x where) 100)

)

When we test this function on the three examples we wrote earlier, it works.

Common pitfalls

Many students think of a posn as the same thing as two numbers, so if I had
written the right-of-100? function above, they would call it in either of the
following ways:

266

(right-of-100? (make-posn 75 112))

(right-of-100? 75 112)

In fact, only the former passes a syntax check in Scheme. The right-of-100?

function defined above expects one parameter of type posn, not two parameters
of type number. Try each of the function calls above; before hitting ENTER,
try to predict what will happen.

Exercise 22.4.2 Develop a function named above-diagonal? which takes
in a posn representing a point on the screen, and tells whether it’s above the
diagonal line x = y.

Hint: Remember that in computer graphics, positive y-values are usually
down, so this diagonal line is from the top-left to bottom-right of the window.
Pick some specific positions, described in (x, y) coordinates, and decide whether
they’re above the diagonal or not; then generalize this to a test that tells whether
any posn is above the diagonal (by looking at its x and y coordinates).

Worked Exercise 22.4.3 Write a function named distance-to-top-left

which takes in a posn representing a point on the screen, and computes the
straight-line distance from this point to the top-left corner (i.e. coordinates
(0, 0)) of the screen, in pixels.

Hint: The formula for the distance is
√

x2 + y2.

Solution: Contract:

; distance-to-top-left: posn -> number

Data analysis: we already know what posn and number mean, and there are
no sub-categories of either one to worry about, only arithmetic.

For the examples, we’ll start with really easy ones we can do in our heads,
then work up to gradually more complicated ones that require a calculator.

"Examples of distance-to-top-left:"

(check-within (distance-to-top-left (make-posn 0 0)) 0 .1)

(check-within (distance-to-top-left (make-posn 6 0)) 6 .1)

(check-within (distance-to-top-left (make-posn 0 4.3)) 4.3 .1)

(check-within (distance-to-top-left (make-posn 3 4)) 5 .1)

; 32 + 42 = 9 + 16 = 25 = 52

(check-within (distance-to-top-left (make-posn 4 7)) 8.1 .1)

; 42 + 72 = 16 + 49 = 65 > 82

Skeleton and inventory (from the template):

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

...)

267

Body: We have two numeric expressions, (posn-x the-point) and (posn-y

the-point), which represent the x and y coordinates respectively. We need to
square each of them:

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (* (posn-x the-point) (posn-x the-point)) a number (x2)

; (* (posn-y the-point) (posn-y the-point)) a number (y2)

...)

Note that there’s getting to be a fuzzy line between inventory and body: we’ve
added these expressions in comments, because they’re not the final body but
we know they’re a step along the way.

Then we need to add those two squares:

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (* (posn-x the-point) (posn-x the-point)) a number (x2)

; (* (posn-y the-point) (posn-y the-point)) a number (y2)

; (+ (* (posn-x the-point) (posn-x the-point))

; (* (posn-y the-point) (posn-y the-point)))

; a number (x2 + y2)

...)

and finally square-root that, using sqrt:

(define (distance-to-top-left the-point)

; the-point a posn

; (posn-x the-point) a number (x)

; (posn-y the-point) a number (y)

; (* (posn-x the-point) (posn-x the-point)) a number (x2)

; (* (posn-y the-point) (posn-y the-point)) a number (y2)

; (+ (* (posn-y the-point) (posn-y the-point))

; (* (posn-y the-point) (posn-y the-point)))

; a number (x2 + y2)

(sqrt (+ (* (posn-x the-point) (posn-x the-point))

(* (posn-y the-point) (posn-y the-point))))

)

We can now test this on the examples we wrote earlier, and it should work.

Exercise 22.4.4 Develop a function named coordinate-difference which
takes in a posn and gives back the difference between the coordinates (which tells
you, in a sense, how far the point is from the diagonal line x = y).

268

Hint: The answer should never be negative, so use the built-in abs (absolute-
value) function to ensure this.

Exercise 22.4.5 Develop a function named distance which takes in two
posns (call them here and there), and computes the straight-line distance be-
tween them. The formula is

√

(xhere − xthere)2 + (yhere − ythere)2)

Hint: Since your function will have two parameters here and there, both of
which are posns, the skeleton will include

; here a posn

; there a posn

; (posn-x here) a number(x coordinate of here)

; (posn-y here) a number(y coordinate of here)

; (posn-x there) a number(x coordinate of there)

; (posn-y there) a number(y coordinate of there)

Exercise 22.4.6 Develop a function named posn=? which takes in two
posns and tells whether they’re the same (i.e. they have the same x coordinate
and the same y coordinate).

Hint: Be sure your examples include two posns that are the same, two that
differ only in x, two that differ only in y, and two that differ in both x and y

coordinates.

Exercise 22.4.7 Develop a function named distance-to-origin which takes
in either a number or a posn and tells how far it is from the appropriate “ori-
gin”. For numbers, that’s 0; for posns, that’s (make-posn 0 0).

22.5 Functions that return posns

Since posn is a data type, like number, image, etc., you can write functions that
return a posn too. Such functions will almost always use make-posn somewhere
in the body. In other words, the output template for posn looks like this:

#|

(check-expect (function-returning-posn ...) (make-posn 3 8))

...

(define (function-returning-posn ...)

(make-posn)

)

|#

269

Worked Exercise 22.5.1 Develop a function named diagonal-point which
takes in a number and returns a posn whose x and y coordinate are both that
number.

Solution: Contract:

; diagonal-point : number -> posn

Data analysis: the input is a number, about which there’s not much to say.
The output is a posn, which has two numeric parts x and y.

Examples:

(check-expect (diagonal-point 0) (make-posn 0 0))

(check-expect (diagonal-point 3.7) (make-posn 3.7 3.7))

Skeleton/inventory (from the output template for posn):

(define (diagonal-point coord)

; coord a number

(make-posn)

)

At this point we’ll apply the “inventory with values” technique.

(define (diagonal-point coord)

; coord a number 3.7

; should be a posn (make-posn 3.7 3.7)

(make-posn)

)

Body: The “inventory with values” makes this really easy: the only reason-
able way we can get (make-posn 3.7 3.7) from a parameter coord with the
value 3.7 is (make-posn coord coord), so that becomes the body:

(define (diagonal-point coord)

; coord a number 3.7

; should be a posn (make-posn 3.7 3.7)

(make-posn coord coord)

)

We run the test cases on this definition, and it works.

The “inventory with values” technique tends to be more useful the more
complicated the function’s result type is. It doesn’t really help when the result
type is Boolean, it helps a little when the result type is a number, even more
when the result type is a string or an image, and it’s extremely helpful for
functions that return a posn or the other complex data types we’ll see in the
next few chapters.

Exercise 22.5.2 Develop a function named swap-x-y which takes in a posn

and returns a new posn with the coordinates swapped: the x coordinate of the
output should be the y coordinate of the input, and vice versa.

270

Hint: This function both takes in and returns a posn, but they’re not the
same posn, so you’ll need to use both the input and output templates for posn.

Exercise 22.5.3 Develop a function named scale-posn which takes in a
number and a posn, and returns a posn formed by multiplying the number by
each of the coordinates of the input posn.

For example,

(check-expect (scale-posn 3 (make-posn 2 5)) (make-posn 6 15))

Exercise 22.5.4 Develop a function named add-posns which takes in two
posns and returns a new posn whose x coordinate is the sum of the x coordinates
of the two inputs, and whose y coordinate is the sum of the y coordinates of the
two inputs.

Exercise 22.5.5 Develop a function named sub-posns which takes in two
posns and returns a new posn whose x coordinate is the difference of the x

coordinates of the two inputs, and whose y coordinate is the difference of the y

coordinates of the two inputs.

Exercise 22.5.6 Redefine the distance function from Exercise 22.4.5 to be
much shorter and simpler, by re-using functions you’ve already seen or written
in this chapter.

Hint: You should be able to do this in two fairly short lines of Scheme code.

Exercise 22.5.7 Develop a function named choose-posn that takes in a
string and two posns. The string should be either "first" or "second". The
choose-posn function should return either the first or the second of its two
posns, as directed by the string.

Hint: Although this function returns a posn, it can be written without using
make-posn (except for the examples); indeed, it’s much shorter, simpler, and
easier without using make-posn. This situation doesn’t happen often, but it
does happen, so don’t use make-posn blindly.

22.6 Writing animations involving posns

Now we can finally solve the problem that started this chapter.

Worked Exercise 22.6.1 Write an animation of a picture that moves up,
down, left, and right in response to the ’up, ’down, ’left, and ’right arrow
keys. It should ignore all other keys.

271

Solution: The model has to represent both the x and y coordinates of the
object, so we’ll use a posn. Since the model isn’t an image, we’ll need a redraw
handler with contract

; show-picture : posn -> image

and we’ll obviously need a key handler with contract

; handle-key : posn symbol-or-char -> posn

Let’s do the show-picture function first. We have its contract already, and
there’s not much to say about the data types.

(define WIDTH 300)

(define HEIGHT 300)

(define BACKGROUND (empty-scene WIDTH HEIGHT))

(define DOT (circle 3 "solid" "blue"))

...

"Examples of show-picture:"

(check-expect (show-picture (make-posn 15 12))

(place-image DOT 15 12 BACKGROUND))

(check-expect (show-picture (make-posn 27 149))

(place-image DOT 27 149 BACKGROUND))

The skeleton and inventory are similar to those we’ve seen before involving
posns:

(define (show-picture where)

; where a posn

; (posn-x where) a number(x)

; (posn-y where) a number(y)

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

...)

Now let’s try the “inventory with values” technique, using the “moderately
complicated” example of (make-posn 27 149).

(define (show-picture where)

; where a posn (make-posn 27 149)

; (posn-x where) a number(x) 27

; (posn-y where) a number(y) 149

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

; should be an image (place-image DOT 27 149 BACKGROUND)

...)

This makes the body pretty easy:

272

(define (show-picture where)

; where a posn (make-posn 27 149)

; (posn-x where) a number(x) 27

; (posn-y where) a number(y) 149

; DOT a fixed image (to be placed)

; BACKGROUND a fixed image (to use as background)

; should be an image (place-image DOT 27 149 BACKGROUND)

(place-image DOT

(posn-x where) (posn-y where)

BACKGROUND)

)

We can test this on the known examples, and it works.

Now for the key handler. Recall that the contract is

; handle-key : posn symbol-or-char -> posn

Since the second parameter is “either a symbol or a char”, we’ll need at least
two examples: a symbol and a char. In fact, if it’s a symbol, there are four
specific symbols we want to recognize — ’left, ’right, ’up, and ’down —
plus “any other symbol,” which we’ll ignore.
"Examples of handle-key:"

(check-expect (handle-key (make-posn 12 19) #\e)
(make-posn 12 19))

; ignore #\e by returning the same model we were given

(check-expect (handle-key (make-posn 12 19) ’left)

(make-posn 11 19))

; move left by decreasing the x coordinate

(check-expect (handle-key (make-posn 12 19) ’right)

(make-posn 13 19))

(check-expect (handle-key (make-posn 12 19) ’up)

(make-posn 12 18))

; remember that positive y-values are down

(check-expect (handle-key (make-posn 12 19) ’down)

(make-posn 12 20))

(check-expect (handle-key (make-posn 12 19) ’home)

(make-posn 12 19))

; ignore special keys other than the four arrows

The skeleton is easy. The inventory will show the expressions we have avail-
able (based on the data type posn):

(define (handle-key where key)

; where a posn

; key a symbol or char

; (posn-x where) a number(x)

; (posn-y where) a number(y)

...)

273

There are four specific values of key that we care about: ’up, ’down, ’left,
and ’right. So we’ll need a conditional with five cases: one for each of these,
and one for “anything else” (which includes ordinary characters as well as other
special keys).

(define (handle-key where key)

; where a posn

; key a symbol or char

; (posn-x where) a number(x)

; (posn-y where) a number(y)

(cond [(key=? key ’up) ...]

[(key=? key ’down) ...]

[(key=? key ’left) ...]

[(key=? key ’right) ...]

[else ...]

)

...)

We still need to fill in the answers. In the “ignore” case, we can simply
return where unchanged:

(define (handle-key where key)

; where a posn

; key a symbol or char

; (posn-x where) a number(x)

; (posn-y where) a number(y)

(cond [(key=? key ’up) ...]

[(key=? key ’down) ...]

[(key=? key ’left) ...]

[(key=? key ’right) ...]

[else where]

))

The other four cases all require producing a posn that’s similar to where, but
moved slightly in either the x or the y dimension. The formulæ for these may
be obvious to you, but in case they’re not, let’s try an “inventory with values”
for each case.

274

(define (handle-key where key)

; where a posn (make-posn 12 19)

; key a symbol or char

; (posn-x where) a number(x) 12

; (posn-y where) a number(y) 19

(cond [(key=? key ’up)

; should be (make-posn 12 18)

]

[(key=? key ’down)

; should be (make-posn 12 20)

]

[(key=? key ’left)

; should be (make-posn 11 19)

]

[(key=? key ’right)

; should be (make-posn 11 21)

]

[else where]

))

From these “right answers”, it’s pretty easy to write the formulæ using make-posn:

(cond [(key=? key ’up)

; should be (make-posn 12 18)

(make-posn (posn-x where) (- (posn-y where) 1))]

[(key=? key ’down)

; should be (make-posn 12 20)

(make-posn (posn-x where) (+ (posn-y where) 1))]

[(key=? key ’left)

; should be (make-posn 11 19)

(make-posn (- (posn-x where) 1) (posn-y where))]

[(key=? key ’right)

; should be (make-posn 11 21)

(make-posn (+ (posn-x where) 1) (posn-y where))]

[else where]

))

Alternatively, we could realize that moving up, moving down, moving left,
and moving right can all be thought of as the same problem: adding something
to both dimensions of the posn, and we’ve already written a function to do that,
in Exercise 22.5.4. So assuming you’ve done that exercise, we can solve the
problem as follows:

275

(cond [(key=? key ’up)

; should be (make-posn 12 18)

(add-posns where (make-posn 0 -1))]

[(key=? key ’down)

; should be (make-posn 12 20)

(add-posns where (make-posn 0 1))]

[(key=? key ’left)

; should be (make-posn 11 19)

(add-posns where (make-posn -1 0))]

[(key=? key ’right)

; should be (make-posn 11 21)

(add-posns where (make-posn 1 0))]

[else where]

))

which is shorter and clearer.
In either case, after testing this, we can put together the animation:

(run-animation WIDTH HEIGHT

(make-posn (/ WIDTH 2) (/ HEIGHT 2)) 1

(on-redraw show-picture)

(on-key handle-key))

Exercise 22.6.2 You may notice that four of the five cases in the final version
of the definition share the pattern

(add-posns where some-posn)

Even the remaining example could be fit into this pattern by adding (make-posn

0 0). This common pattern suggests that the function definition could be sim-
plified by “factoring out” the add-posns, moving it outside the cond so the cond

decides only what to use as the second argument to add-posns. Try this.

Exercise 22.6.3 Develop an animation of a dot that jumps randomly around
the window: every half second, it disappears from where it was and appears at
a completely random location with 0 ≤ x ≤ WIDTH and 0 ≤ y ≤ HEIGHT.

Hint: This is easier than Exercise 22.6.1, since you don’t need to worry about
what key was pressed.

Hint: Use a posn as the model. You can get this to work with an image as
the model, but that’ll make it difficult to modify for Exercise 22.6.4.

Exercise 22.6.4 Modify Exercise 22.6.3 so that if the user clicks the mouse
on the dot (i.e. within a distance of 3 from its current center), the animation
ends with the message “Congratulations!” This forms a sort of video-game,
which will get harder if you shorten the time between ticks.

276

The following five exercises list several fun features to add to these anima-
tions. They’re independent of one another; you can do any or all of them, in
whatever order you wish.

Exercise 22.6.5 Modify Exercise 22.6.1 or 22.6.3 so that if the user types
the letter “q”, the animation ends.

Exercise 22.6.6 Modify Exercise 22.6.1 or 22.6.3 so that whenever the
user clicks the mouse, the dot jumps immediately to the mouse location .

Exercise 22.6.7 Modify Exercise 22.6.1 or 22.6.3 so that the display is a
green dot if it’s within 50 pixels from the center of the window (i.e. (make-posn
(/ WIDTH 2) (/ HEIGHT 2)), and a red dot if it’s farther away.

Hint: re-use a function we’ve seen earlier in this chapter.

Exercise 22.6.8 Modify Exercise 22.6.1 so that in addition to responding
to arrow keys, the dot moves slowly and randomly around the screen every half
second: with equal probability, it moves up one pixel, down one pixel, left one
pixel, or right one pixel.

Hint: You’ll obviously need to use random. Since all four random choices re-
sult in adding something to the current posn, you could write a helper function
choose-offset that takes in a number (either 0, 1, 2, or 3) and returns the ap-
propriate posn to add. Alternatively, you could write a function random-offset

that takes in a dummy parameter, ignores it, picks a random number (either
0, 1, 2, or 3), and returns the appropriate posn to add. The latter approach is
easier to use, but harder to test.

Exercise 22.6.9 Modify Exercise 22.6.1 so that if the dot reaches an edge
of the window, it “wraps around”. That is, if it’s at x coordinate 0, and tries to
move left, its x coordinate becomes WIDTH; if it’s at x coordinate WIDTH and tries
to move right, its x coordinate becomes 0. Likewise, if the y coordinate is 0 and
it tries to move up, the y coordinate becomes HEIGHT, while if the y coordinate
is HEIGHT and the dot tries to move down, it jumps to y coordinate 0.

Hint: It may be easiest to just move the posn, without worrying about
whether it’s outside the window, and then call a helper function that takes in
the “attempted” position of the dot and returns a “corrected” position with
0 ≤ x ≤ WIDTH and 0 ≤ y ≤ HEIGHT.

22.7 Review

Sometimes an animation (or other kind of program) needs to store several pieces
of data together in a “package”. DrScheme has a predefined data type posn to
represent (x,y) coordinate pairs, perhaps the most common example of this sit-
uation. There are several predefined functions — make-posn, posn-x, posn-y,

277

posn? — that work with posns. When writing a function that takes in a posn,
the inventory should list not only the parameter itself but the x and y parts of
the parameter.

The “inventory with values” technique is especially helpful for functions with
a complicated return type like posn, the other structures in the next chapter,
lists, etc.)

One can also write functions that return a posn, typically (though not al-
ways) using make-posn inside the body of the function.

An animation can use a posn as its model; this gives you a great deal more
power to write fun animations that move around the screen.

278

Chapter 23

Inventing new structures

23.1 Why and how

Chapter 22 showed how to store two numbers — an x coordinate and a y

coordinate — in a single variable. This enabled us to write animations that
“remember” a two-dimensional position, and can change either or both of the
coordinates.

But what if you have more than two pieces of information to remember? Or
what if one of them isn’t a number? The posn data type won’t help you much
in those situations.

Let’s review what a posn is, then see how to generalize the idea.

• A posn is a package containing two “parts” (also known as fields or in-
stance variables) named x and y, each of which is a number.

• posn itself is a data type (like number or image), but there may be many
instances of this data type: 2/3, 5, and -72541 are all instances of number,
while (make-posn 3 4) and (make-posn 92 -3/4) are both instances of
posn.

• There’s a built-in function named make-posn that takes in two numbers
and puts them together into a posn package. (Computer scientists call
this a constructor.)

• There are two built-in functions named posn-x and posn-y that pull out
the individual numbers from such a package. (Computer scientists call
these getters.)

• There’s a built-in function named posn? that takes in any Scheme object
and tells whether or not it is a posn. (Computer scientists call this a
discriminator.)

If we were trying to represent something other than a two-dimensional co-
ordinate pair, we might need more fields, and they might have different names

279

280

and types. We would still need a “constructor” function that takes in the values
of the parts and puts them together into a package. We would still need several
“getter” functions (one for each “part”) that retrieve the individual parts from
a package. And we would still need a “discriminator” function which tells us
whether a given object is this kind of package at all.

Scheme provides a way to define other data types analogous to posn, with
fields, constructor, getters, and discriminator. Here’s the syntax rule:

Syntax Rule 7 Anything matching the pattern

(define-struct struct-name (field-name-1 ... field-name-n))

is a legal expression, as long as struct-name is a previously undefined name.
(The field-names may or may not already be defined elsewhere; it doesn’t mat-
ter.)

The expression has no value, but the side effect of defining a new data type
struct-name and several functions with contracts

; make-struct-name : n objects -> struct-name

; struct-name -field-name-1 : struct-name -> object

; ...

; struct-name -field-name-n : struct-name -> object

; struct-name ? : object -> boolean

There’s a lot going on in there, so let’s see how it applies to the one struct

we’ve already seen — a posn. This type happens to be predefined in the HtDP
languages of DrScheme, but if it weren’t, we could define it ourselves as follows:

(define-struct posn (x y))

The struct-name is posn. There are two fields, named x and y. So we’ve
defined a new data type named posn, as well as the following functions:

; make-posn : object(x) object(y) -> posn

; posn-x : posn -> object

; posn-y : posn -> object

; posn? : object -> boolean

which (mostly) agrees with what we learned in the previous chapter.
There’s one difference between these contracts and those you learned in

Chapter 22: the “parts” of a posn here are just “objects”, rather than specifi-
cally numbers. In fact, you can build a posn whose “x coordinate” is a string
and whose “y coordinate” is an image, and you won’t get any error messages —
but as soon as you try to use that posn in a function that expects the coordi-
nates to be numbers, it’ll crash. To avoid this, we agree to follow the convention
that the coordinates in a posn are always numbers, so in practice the contracts
really are

; make-posn : number(x) number(y) -> posn

; posn-x : posn -> number

; posn-y : posn -> number

; posn? : object -> boolean

281

exactly as we learned in the previous chapter.

Worked Exercise 23.1.1 Define a structure to represent a person, with first
and last names and age.

Solution: The structure has three parts, which can naturally be called first,
last, and age. We’ll agree to the convention that first and last are both strings,
while age is a number. So the struct definition looks like

(define-struct person (first last age))

This has the effect of defining a new data type person, along with the functions

; make-person : string(first) string(last) number(age) -> person

; person-first : person -> string

; person-last : person -> string

; person-age : person -> number

; person? : object -> boolean

To see that this definition actually works, we put the define-struct line
(and, ideally, the comments about function contracts) in the definitions pane,
hit “Run”, and we can now use the person type as follows:

>(make-person "Joe "Schmoe" 19)

(make-person "Joe" "Schmoe" 19)

>(define author (make-person "Stephen" "Bloch" 45))

>(define lambda-guy (make-person "Alonzo" "Church" 106))

>(person-first author)

"Stephen"

>(person-last author)

"Bloch"

>(person-last lambda-guy)

"Church"

>(person-first lambda-guy)

"Alonzo"

>(person-first (make-person "Joe" "Schmoe" 19))

"Joe"

>(person-age lambda-guy)

106

>(person? author)

true

>(person? "Bloch")

false

>(person? (make-person "Joe" "Schmoe" 19))

true

282

Figure 23.1: Design recipe for defining a struct

1. Identify the parts of the desired data types: how many parts should it
have, and what are their names and their types?

2. Write a define-struct according to Syntax Rule 7.

3. Write down (in comments) the contracts for the functions that “come
for free”:

• a constructor, whose name is make- followed by the name of the
struct;

• several getters (one for each field) whose names are the name of the
struct, a hyphen, and the name of one of the fields;

• a discriminator whose name is the name of the struct, followed by a
question mark.

4. Write some examples of objects of the new data type.

5. Write input and output templates for functions that work on the new type.

SIDEBAR:

Alonzo Church (1903-1995) invented a model of computation called the
“lambda calculus” (no relation to the “calculus” that’s about derivatives
and integrals) which later became the inspiration for the Lisp and Scheme
languages. This is why there’s a Greek letter lambda (λ) in the DrScheme
logo; we’ll learn more about lambda in Chapter 33. Alonzo Church was
also my Ph.D. advisor’s Ph.D. advisor’s Ph.D. advisor. So there.

Note that you don’t need to define make-person, person-first, person-last,
person-age, or person?; they “come for free” with define-struct. We wrote
down their contracts only so we would know how to use them.

23.2 A Recipe for Defining a Struct

Back in Chapter 5, we learned a step-by-step recipe for defining a function, and
in Chapter 10 we learned a step-by-step recipe for writing an animation. A
step-by-step recipe for defining a struct is in Figure 23.1.

Worked Exercise 23.2.1 Define a data type to represent an employee of a
business, including the employee’s name (we won’t bother with first and last
names), ID number, and salary.

Solution:

283

Identify the parts

; An employee has three parts: name, id, and salary.

; The name is a string, while id and salary are numbers.

Write a define-struct

(define-struct employee (name id salary))

Write contracts for the functions that “come for free”

; make-employee:

string(name) number(id) number(salary) -> employee

; employee-name: employee -> string

; employee-id: employee -> number

; employee-salary: employee -> number

; employee?: object -> boolean

Write examples of the new data type

(make-employee "Joe" 348 42995)

(make-employee "Mary" 214 49500)

(define emp1 (make-employee "Bob" 470 36000))

(define emp2 (make-employee "Chris" 471 41000))

(check-expect (employee-name emp1) "Bob")

(check-expect (employee-id emp2) 471)

(check-expect (employee-salary emp2) 41000)

(check-expect (employee-salary (make-employee "Mary" 214 49500))

49500)

(check-expect (employee? emp1) true)

(check-expect (employee? "Mary") false)

Write templates

The input template is

284

#|

(check-expect (function-on-employee emp1) ...)

(check-expect (function-on-employee

(make-employee "Joe" 348 42995))

...)

(define (function-on-employee emp)

; emp an employee

; (employee-name emp) a string

; (employee-id emp) a number

; (employee-salary emp) a number

...)

|#

and the output template

#|

(check-expect (function-returning-employee ...) emp1)

(check-expect (function-returning-employee ...)

(make-employee "Joe" 348 42995))

(define (function-returning-employee ...)

(make-employee)

)

|#

23.3 Exercises and Common Pitfalls

Students often get confused between define-struct and make-person (and
other constructors like make-cd and make-employee).

By way of analogy, imagine an inventor who has invented a new kind of cell
phone. The inventor probably doesn’t actually build cell phones herself; instead,
she produces blueprints, diagrams, etc. for how the new kind of cell phone is
supposed to go together. Based on these blueprints and diagrams, somebody
builds a factory which then builds millions of individual cell phones.

In our setting, define-struct is like the inventor. The make-person and
make-cd functions are like factories: they don’t even exist until the inventor has
done her work, but then they can be used to build as many instances of person
or cd respectively as you wish.

I often also see students write things like
(define-struct employee (name id salary))

(define emp1 (make-employee "Bob" 470 36000))

(check-expect emp1-salary 36000)

(check-expect (emp1-salary employee) 36000)

285

There is no variable or function named emp1-salary, nor is there a variable
named employee, so the last two lines both produce error messages. But there
is a function named employee-salary, which takes in an employee object; the
student probably meant
(check-expect (employee-salary emp1) 36000)

Another pitfall: the same student writes
(check-expect (employee-salary "Bob") 36000)

What’s wrong with this? Well, there is a function named employee-salary,
but its contract specifies that it takes in an employee, not a string. What this
student is trying to do is look up a previously-defined employee by one of its
field values; we’ll learn how to do this in Chapter ??.

Exercise 23.3.1 Define a data type to represent a CD in your audio library,
including such information as the title, performer, what year it was recorded,
and how many tracks it has.

Exercise 23.3.2 Define a data type to represent a candidate in an election.
There should be two fields: the candidate’s name and how many votes (s)he got.

Exercise 23.3.3 Define a data type to represent a course at your school, in-
cluding the name of the course, the name of the instructor, what room it meets
in, and what time it meets. (For now, assume all courses start on the hour, so
you only need to know what hour the course starts.)

Hint: You’ll need to decide whether a “room” is best represented as a number
or a string.

Exercise 23.3.4 Define a data type to represent a basketball player, including
the player’s name, what team (s)he plays for, and his/her jersey number.

Exercise 23.3.5 Define a data type to represent a dog (or a cat if you prefer),
with a name, age, weight, and color.

Exercise 23.3.6 Define a data type to represent a mathematical rectangle,
whose properties are length and width.

Hint: There’s already a function named rectangle, so if you try to write
(define-struct rectangle ...), you’ll probably get an error message. Name
your struct rect instead.

Hint: This data type has nothing to do with images. A rect has no color, it is
not outlined or solid, it has no position, etc.; it has only a length and a width.

Exercise 23.3.7 Define a data type to represent a time of day, in hours, min-
utes, and seconds. (Assume a 24-hour clock, so 3:52:14 PM would have hours=15,
minutes=52, seconds=14.)

286

23.4 Writing functions on user-defined structs

Writing functions using a struct you’ve defined yourself is no more difficult than
writing functions using posns.

Worked Exercise 23.4.1 Define a function that takes in an employee (from
Exercise 23.2.1) and tells whether or not the employee earns over $100,000 per
year.

Solution: Before you type any of this stuff, make sure you’ve got the definition
of the employee data type, and perhaps its examples, in the definitions pane.
The following stuff should all appear after that definition.

Contract:

; earns-over-100k? : employee -> boolean

Examples:

(check-expect

(earns-over-100k? (make-employee "Phil" 27 119999)) true)

(check-expect

(earns-over-100k? (make-employee "Anne" 51 100000))

false ; (borderline case)

(check-expect (earns-over-100k? emp1) false)

; assuming the definition of emp1 from before

Skeleton:

(define (earns-over-100k? emp)

...)

Inventory:

(define (earns-over-100k? emp)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; 100000 fixed number

...)

287

Body:

We don’t actually need the employee name or id, only the salary.

(define (earns-over-100k? emp)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; 100000 fixed number

(> (employee-salary emp) 100000)

)

Testing:

Hit “Run” and see whether the actual answers match what you said they “should
be”.

Exercise 23.4.2 Develop a function rec-before-1980? which takes in a CD
and returns true or false depending on whether it was recorded before 1980.

Exercise 23.4.3 Develop a function older? which takes in two person structs
and tells whether the first is older than the second.

Exercise 23.4.4 Develop a function same-team? which takes in two basketball-
player structs and tells whether they play for the same team.

Exercise 23.4.5 Develop a function full-name which takes in a person struct
and returns a single string containing the person’s first and last names, separated
by a space.

Exercise 23.4.6 Develop a function rect-area which takes in a rect struct
and returns the area of the rectangle (i.e. length times width).

Exercise 23.4.7 Develop a function larger-rect? which takes in two rect

structs and tells whether the first has a larger area than the second.

Hint: Copying the input template for the rect structure will take care of one
of the two parameters; for the other, you’ll need to copy the inventory again
and change the parameter name.

Exercise 23.4.8 Develop a function secs-since-midnight which takes in a
time-of-day struct and returns how many seconds it has been since midnight.

Exercise 23.4.9 Develop a function secs-between which takes in two time-
of-day structs and returns the difference between them, in seconds.

Hint: For example, the time 11:01:14 is 124 seconds after the time 10:59:10.

288

Exercise 23.4.10 Develop a function named who-won which takes in three can-
didate structures (from Exercise 23.3.2) and returns the name of the one with
the most votes, or the word “tie” if two or more of them tied for first place.

Note: Obviously, this resembles Exercise 15.5.4, but it doesn’t assume that
the candidates’ names are always “Anne”, “Bob”, and “Charlie”; it’ll work with
any names.

23.5 Functions returning user-defined structs

Just as you can write a function to return a posn, you can also write a function
that returns a name, cd, employee, or any other type you’ve defined. As in
Section 22.5, you’ll usually (but not always!) need a make-whatever in the
body of your function. Use the output template.

Worked Exercise 23.5.1 Define a function change-salary which takes in an
employee (from Exercise 23.2.1) and a number, and produces a new employee
just like the old one but with the salary changed to the specified number.

Solution:

Contract:

; change-salary : employee number -> employee

Examples:

(check-expect

(change-salary (make-employee "Joe" 352 65000) 66000)

(make-employee "Joe" 352 66000))

(check-expect

(change-salary (make-employee "Croesus" 2 197000) 1.49)

(make-employee "Croesus" 2 1.49))

Skeleton and Inventory

Since this function both takes in and returns an employee, we can use both the
input and output templates to help us write it.

(define (change-salary emp new-salary)

; emp employee

; (employee-name emp) string

; (employee-id emp) number

; (employee-salary emp) number

; new-salary number

(make-employee))

289

Since this function returns something of a complex data type, we’ll use an
inventory with values:

(define (change-salary emp new-salary)

; emp employee (make-employee "Joe" 352 65000)

; (employee-name emp) string "Joe"

; (employee-id emp) number 352

; (employee-salary emp) number 65000

; new-salary number 66000

; right answer employee (make-employee "Joe" 352 66000)

(make-employee))

This makes the Body fairly obvious:
(define (change-salary emp new-salary)

; emp employee (make-employee "Joe" 352 65000)

; (employee-name emp) string "Joe"

; (employee-id emp) number 352

; (employee-salary emp) number 65000

; new-salary number 66000

; right answer employee (make-employee "Joe" 352 66000)

(make-employee (employee-name emp)

(employee-id emp)

new-salary)

)

Now test the function and see whether it works correctly on both examples.

Exercise 23.5.2 Develop a function change-jersey which takes in a basketball
player struct and a number and produces a basketball player with the same name
and team as before, but the specified jersey number.

Exercise 23.5.3 Develop a function birthday which takes in a person struct
and returns a person with the same first and last name, but one year older.

Exercise 23.5.4 Develop a function change-name-to-match which takes in
two person structs and returns a person just like the first one, but with the last
name changed to match the second one.

Exercise 23.5.5 Develop a function raise-salary-percent which takes in an
employee structure and a number, and produces a copy of the employee with the
specified percentage increase in salary.

Exercise 23.5.6 Develop a function add-a-vote which takes in a candidate
structure and adds one to his/her vote count.

290

Exercise 23.5.7 Develop a function swap-length-width which takes in a rect

structure and produces a new rect whose length is the width of the given rect,
and vice versa.

23.6 Animations using user-defined structs

Worked Exercise 23.6.1 Write an animation of a picture that moves steadily
to the right or left, say 3 pixels per second; if the user presses the right-arrow
key, the picture starts moving to the right, and if the user presses the left-arrow
key, the picture starts moving to the left.

Solution:

Model

Since the picture only needs to move left and right, we need only the x coor-
dinate of its location (we’ll probably want to define a named constant for its y

coordinate). However, we also need to keep track of which direction it’s mov-
ing — left or right — so that a tick handler can move it in the appropriate
direction every second. One way to do that is with a symbol which will always
be either ’left or ’right. So our model needs to have two fields, which we
can call x (a number) and dir (a symbol). We’ll name such a data structure a
moving-x.

Combining this English-language description with a define-struct, we get

; A moving-x consists of x (a number) and

; dir (a symbol, either ’left or ’right)

(define-struct moving-x (x dir))

which gives us the following functions “for free”:

; make-moving-x : number symbol -> moving-x

; moving-x-x : moving-x -> number

; moving-x-dir : moving-x -> symbol

; moving-x? : object -> boolean

Some examples of the new data type:

(define state1 (make-moving-x 10 ’right))

(define state2 (make-moving-x 29 ’left))

(check-expect (moving-x-x state1) 10)

(check-expect (moving-x-dir state2) ’left)

An input template:

291

#|

; (moving-x-dir current) symbol

(define (function-on-moving-x current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) symbol

...)

|#

And an output template:

#|

(define (function-returning-moving-x current)

(make-moving-x))

|#

Handlers and their contracts

Since the model isn’t an image, we’ll need a redraw handler with contract

; handle-redraw : moving-x -> scene

Since we’re doing something every second, we’ll need a tick handler with
contract

; handle-tick : moving-x -> moving-x

And since we need to respond to key presses, we’ll need a key handler with
contract

; handle-key : moving-x key -> moving-x

Writing the redraw handler

We already have a contract. To make the examples easy, we can revive the
calendar-at-x function from Chapter 8 and say

(check-expect (handle-redraw state1) (calendar-at-x 10))

(check-expect (handle-redraw state2) (calendar-at-x 29))

The skeleton and inventory are easy from the input template:

(define (handle-redraw current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) symbol

...)

If you already see what to do, great. If not, we’ll add an “inventory with
values”:

292

(define (handle-redraw current)

; current moving-x (make-moving-x 10 ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer scene (calendar-at-x 10)

...)

This makes the body easy:

(define (handle-redraw current)

; current moving-x (make-moving-x 10 ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer scene (calendar-at-x 10)

(calendar-at-x (moving-x-x current))

)

Test this function on the above test cases before going on. Once it works,
and if it’s OK with your instructor, you might want to take out the “scratch
work”, leaving only the real code, which is quite short:

(define (handle-redraw current)

(calendar-at-x (moving-x-x current))

)

Writing the tick handler

We already have a contract. Since the speed of motion is a fixed number, let’s
define a constant for it:

(define SPEED 3)

And since part of the input data type has two cases (’left and ’right), we’ll
need at least two examples, one for each.

(check-expect (handle-tick (make-moving-x 10 ’right))

(make-moving-x (+ 10 SPEED) ’right))

(check-expect (handle-tick (make-moving-x 29 ’left))

(make-moving-x (- 29 SPEED) ’left))

For the skeleton and inventory, we copy the template, change the name, and
add some special values:

293

(define (handle-tick current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) symbol

; SPEED fixed number

; ’left, ’right fixed symbols

...)

Clearly, we’ll need to do something different depending on whether the cur-
rent direction is ’left or ’right, so we’ll need a conditional with those two
cases (plus an error-handling case):

(define (handle-tick current)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) symbol

; SPEED fixed number

; ’left, ’right fixed symbols

(cond [(symbol=? (moving-x-dir current) ’left)

...

]

[(symbol=? (moving-x-dir current) ’right)

...

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

To figure out what to do in each case, let’s copy the relevant parts of the
inventory into each case and do an “inventory with values” for each:

294

(define (handle-tick current)

; ...

(cond [(symbol=? (moving-x-dir current) ’left)

; (moving-x-x current) number 29

; (moving-x-dir current) symbol ’left

; right answer moving-x

; (make-moving-x (- 29 SPEED) ’left)

]

[(symbol=? (moving-x-dir current) ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x

; (make-moving-x (+ 10 SPEED) ’right)

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

Which makes the “answer” part of each cond-clause pretty easy:

(define (handle-tick current)

; ...

(cond [(symbol=? (moving-x-dir current) ’left)

; (moving-x-x current) number 29

; (moving-x-dir current) symbol ’left

; right answer moving-x

; (make-moving-x (- 29 SPEED) ’left)

(make-moving-x (- (moving-x-x current) SPEED) ’left)

]

[(symbol=? (moving-x-dir current) ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x

; (make-moving-x (+ 10 SPEED) ’right)

(make-moving-x (+ (moving-x-x current) SPEED) ’right)

]

[else (error ’handle-tick

"Direction is neither left nor right!")]

)

)

Test this function on the above test cases before going on.

Writing the key handler

We already have a contract. One of the inputs is a key, which for our purposes

295

can be broken down into ’left, ’right, and anything else. To stay on the safe
side, we should probably have four test cases: one ’left, one ’right, one other
symbol, and one character.

(check-expect (handle-key state1 #\e) state1)

(check-expect (handle-key state1 ’up) state1)

(check-expect (handle-key state1 ’right) state1)

; since state1 is already going right

(check-expect (handle-key state1 ’left)

(make-moving-x 10 ’left))

(check-expect (handle-key state2 ’right)

(make-moving-x 29 ’right))

For the skeleton and inventory, we have a choice: since the function takes in
both a moving-x and a key, we could use the template for either one. In fact,
we’ll probably need elements of both:

(define (handle-key current key)

; current moving-x

; (moving-x-x current) number

; (moving-x-dir current) symbol

; key char or symbol

; ’left, ’right fixed symbols

(cond [(key=? key ’left) ...]

[(key=? key ’right) ...]

[else ...]

)

)

The “else” case is easy: return current without modification. For the other
two, we can use an “inventory with values”:
(cond [(key=? key ’left)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x (make-moving-x 10 ’left)

...]

[(key=? key ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x (make-moving-x 10 ’right)

...]

[else current]

)

)

To fill in the first of the “. . . ” gaps, we clearly need (make-moving-x

(moving-x-x current) key). For the second, there are two places we could
get a ’right from: (moving-x-dir current) and key. Which one should
we use? One way to decide would be to do another “inventory with values”,

296

using an example that was traveling to the left . . . but since we’ve already
said (make-moving-x (moving-x-x current) key) in the ’left case, it seems
simpler to do the same thing in the ’right case:
(cond [(key=? key ’left)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x (make-moving-x 10 ’left)

(make-moving-x (moving-x-x current) key)]

[(key=? key ’right)

; (moving-x-x current) number 10

; (moving-x-dir current) symbol ’right

; right answer moving-x (make-moving-x 10 ’right)

(make-moving-x (moving-x-x current) key)]

[else current]

)

)

Notice that we’re returning the exact same expression in the ’left and
’right cases. Recognizing this, we can simplify the program by combining
them into one:
(define (handle-key current key)

; ...

(cond [(or (key=? key ’left) (key=? key ’right))

(make-moving-x (moving-x-x current) key)]

[else current]

)

)

Test this before going on.

Running the animation

Now that we know each of the handlers works by itself, we can put them to-
gether:

(run-animation WIDTH HEIGHT

(make-moving-x (/ WIDTH 2) ’right)

; start at middle, moving right

1 ; tick every second

(on-redraw handle-redraw)

(on-tick handle-tick)

(on-key handle-key)

)

which, when I test it, works as it’s supposed to.

Exercise 23.6.2 Modify the animation of Exercise 23.6.1 so that if the x

coordinate becomes less than 0, the direction switches to ’right, and if the x

297

coordinate becomes more than WIDTH, the direction switches to ’left — in other
words, the picture “bounces” off the walls.

Exercise 23.6.3 Modify the animation of Exercise 22.6.4 so that it keeps
track of how many clicks you’ve done before successfully clicking on a dot. Once
you do, the end-of-time message should read something like "Congratulations!
It took you 13 clicks to hit a dot."

Hint: Your model needs to “remember” the current x and y coordinates
of the dot, as well as how many clicks there have been so far (initially zero).
The tick handler will generate a new set of random coordinates but keep the
click count unchanged. The mouse handler will add one to the click count, but
leave the coordinates unchanged (unless the click was close enough, in which
case it builds an appropriate end-of-time message using number->string and
string-append).

Hint: This is easier to do using end-of-time rather than stop-when.

23.7 Structs containing other structs

In Exercise 23.6.3, you probably defined a struct with three fields: x, y, and
clicks. Two of the three happen to be the exact same fields as in a posn, so
an alternative way to define this struct would be as two fields, one of which
is a posn. (Fields of a struct can be any type, even another struct.) This
has some advantages — any function you’ve previously written to work on
posns can be re-used without change — and some disadvantages — building an
example is more tedious, e.g. (make-click-posn (make-posn 3 4) 5) rather
than (make-click-posn 3 4 5).

Exercise 23.7.1 Modify the animation of Exercise 23.6.3 to use this sort of a
model. It should behave exactly as before. Is the code shorter or longer? Easier
or harder to understand?

Exercise 23.7.2 Define a data type placed-circ to represent a mathematical
circle with its two-dimensional location. It should have a posn for its center,
and a number for its radius.

Exercise 23.7.3 Define a data type placed-rect to represent a mathematical
rectangle with its two-dimensional location. It should have a posn for the “top-
left corner” (a common way of representing rectangles in computer graphics),
and two numbers for the width and height.

Exercise 23.7.4 Define a function circs-overlap? which takes in two of
these placed-circ structures and tells whether they overlap.

Hint: Use the distance between their centers, together with their radii.

298

Exercise 23.7.5 Write an animation of a dot that moves around the screen at
a constant speed until it hits the top, left, right, or bottom edge of the window,
at which time it “bounces off”.

Hint: You’ll need a posn to represent the current location, plus two numbers
(or a posn, if you prefer) to represent the current velocity — how fast is it
moving to the right, and how fast is it moving down? When you hit a wall, one
component of the velocity should be reversed, and the other should stay as it
was. You may find it easier to break your tick handler into three functions: one
to move the dot, one to decide whether it should bounce in the x dimension,
and one to decide whether it should bounce in the y dimension.

Exercise 23.7.6 Modify the animation of Exercise 23.7.5 so that if you press
any of the arrow keys, it accelerates the dot in that direction (that is, it changes
the velocity, not the location). You now have a rocket-ship simulation.

Exercise 23.7.7 Modify the animation of Exercise 23.7.5 so that every second,
the dot slows down a little bit (call it friction) — say, 5% per second. You now
have a billiards simulation.

Exercise 23.7.8 Modify Exercise 20.4.2 (typing into the animation window) so
there’s a vertical-bar cursor showing where you’re currently typing. The right-
arrow key will move the cursor one character to the right (unless it’s already at
the end of the text), left-arrow one character to the left (unless it’s already at the
beginning), any ordinary character you type will be inserted into the text where
the cursor is (and the cursor will move to the right), and the key #\backspace

will delete the character just before the cursor.

Hint: You’ll need to define a structure to represent both the string that
appears in the window and the location of the cursor. One good way to do this
is to store two strings: the text before the cursor and the text after the cursor.

23.8 Decisions on types, revisited

In chapter 20, we learned to define a new data type “by choices”, e.g. “an X
is either a Y or a Z”. But in that chapter, Y and Z were always predefined
types like string, number, image, etc.. The technique of “definition by choices”
becomes more useful when Y and Z are themselves defined “by parts”, i.e.
structs.

Recall that to write a function on a type defined by choices, we needed
discriminator functions (e.g. number?, string?, image?) to tell which type
something was. Conveniently enough, define-struct gives you a discriminator
function for the newly-defined type, with the obvious name (posn?, person?,
employee?, candidate?, . . .).

299

Worked Exercise 23.8.1 Define a data type placed-shape which is either a
placed-circ (from Exercise 23.7.2) or a placed-rect (from Exercise 23.7.3).

Develop a function perimeter which works on a placed-shape and returns
the length of the boundary of the shape.

Solution: The data definition is simply “A placed-shape is either a placed-
circ or a placed-rect.” However, for this definition to be useful, we need some
examples of the data type, and we need templates. Examples are easy: any
placed-circ or any placed-rect will do (and to test a function on placed-
shape, we should have at least one of each). Depending on exactly how you did
Exercises 23.7.2 and 23.7.3, this could look like

(define shape-1 (make-placed-circ (make-posn 3 8) 5))

(define shape-2 (make-placed-rect (make-posn 15 21) 12 8))

The input template looks like

#|

(define (function-on-placed-shape s)

(cond [(placed-circ? s) (function-on-placed-circ s)]

[(placed-rect? s) (function-on-placed-rect s)]

))

|#

where function-on-placed-circ and function-on-placed-rect indicate func-
tions written based on the input templates for those data types. If these func-
tions are fairly short and simple, it may be more practical to combine all three
into one, following a combined template like

#|

(define (function-on-placed-shape s)

(cond [(placed-circ? s)

; s placed-circ

; (placed-circ-center s) posn

; (placed-circ-radius s) number

...]

[(placed-rect? s)

; (placed-rect-top-left s) posn

; (placed-rect-width s) number

; (placed-rect-height s) number

...]

))

|#

Again, some of the details may vary depending on how you did Exercises 23.7.2
and 23.7.3.

We can also write an output template:

300

#|

(define (function-returning-placed-shape ...)

(cond [... (function-returning-placed-circ ...)]

[... (function-returning-placed-rect ...)]

))

|#

As with the input template, if the relevant functions returning a placed-circ
and a placed-rect are short and simple, it makes more sense to combine them
all into one template:

#|

(define (function-returning-placed-shape ...)

(cond [... (make-placed-circ)]

[... (make-placed-rect)]

))

|#

To define the perimeter function, we have a choice: either we write three
separate functions circ-perimeter, rect-perimeter, and perimeter, each of
which is fairly short, or we combine them into one larger function. We’ll do
both here, so you can see the advantages and disadvantages of each approach.

; circ-perimeter : placed-circ -> number

(define empty-circ (make-placed-circ (make-posn 0 0) 0))

(define circ-1 (make-placed-circ (make-posn 10 4) 1))

(check-within (circ-perimeter empty-circ) 0 .01)

(check-within (circ-perimeter circ-1) 6.28 .01)

(check-within (circ-perimeter shape-1) 31.4 .1)

(define (circ-perimeter c)

; c placed-circ

; (placed-circ-center c) posn

; (placed-circ-radius c) number

(* pi 2 (placed-circ-radius c)))

Note that since the formula for the perimeter of a circle involves π, which
can be represented only approximately in a computer, the answer is inherently
approximate so we use check-within rather than check-expect.

301

; rect-perimeter : placed-rect -> number

(define empty-rect (make-placed-rect (make-posn 0 0) 0 0))

(define horiz-line (make-placed-rect (make-posn -1 0) 2 0))

(define square-2 (make-placed-rect (make-posn 1 1) (sqrt 2) (sqrt 2)))

(check-expect (rect-perimeter empty-rect) 0)

(check-expect (rect-perimeter horiz-line) 4)

(check-within (rect-perimeter square-2) 5.66 .01)

(check-expect (rect-perimeter shape-2) 40)

(define (rect-perimeter r)

; r placed-rect

; (placed-rect-top-left r)posn

; (placed-rect-width r) number

; (placed-rect-height r) number

(* 2 (+ (placed-rect-width r) (placed-rect-height r))))

The function on placed-shapes is now fairly simple:

; perimeter : placed-shape -> number

(check-within (perimeter empty-circ) 0 .01)

(check-within (perimeter empty-rect) 0 .01)

(check-within (perimeter circ-1) 6.28 .01)

(check-within (perimeter square-2) 5.66 .01)

(check-within (perimeter shape-1) 31.4 .1)

(check-within (perimeter shape-2) 40 .1)

(define (perimeter s)

(cond [(placed-circ? s) (circ-perimeter s)]

[(placed-rect? s) (rect-perimeter s)]

))

If we wanted to write the whole thing as one big function, it would look
more like this (the contract and examples are unchanged):

(define (perimeter s)

(cond [(placed-circ? s)

; c placed-circ

; (placed-circ-center c) posn

; (placed-circ-radius c) number

(* pi 2 (placed-circ-radius c))]

[(placed-rect? s)

; r placed-rect

; (placed-rect-top-left r)posn

; (placed-rect-width r) number

; (placed-rect-height r) number

(* 2 (+ (placed-rect-width r) (placed-rect-height r)))]

))

If you were sure you would only need the perimeter function, not the more
specific versions of it for the placed-circ and placed-rect types, and if you
were confident of your programming skills, the single-function solution would

302

probably be quicker and easier to write. On the other hand, three little functions
are generally easier to test and debug (one at a time!) than one big function,
and they can be individually re-used. For example, if in some future problem
you wanted the perimeter of something you knew was a placed-circ, not a
placed-rect, you could use circ-perimeter rather than the more general,
but slightly less efficient, perimeter. In the long run, you should know both
approaches.

Exercise 23.8.2 Develop a function area which works on a placed-shape
and returns the area of the shape.

Exercise 23.8.3 Develop a function contains? which takes in a placed-
shape and a posn and tells whether the posn is inside the shape. Consider the
shape to include its border, so a point exactly on the border is “contained” in
the shape.

Exercise 23.8.4 Develop a function shapes-overlap? which takes in two
placed-shapes and tells whether they overlap.

Hint: This problem is a little harder. Since each of the two parameters can
be either a circle or a rectangle, you have four cases to consider. The “both
circles” case is handled by Exercise 23.7.4; the “both rectangles” case can be
handled by using a previously-defined function on placed-shapes; and the “circle
and rectangle” cases will require some geometrical thinking.

Exercise 23.8.5 Develop an animation like Exercise 22.6.4 or 23.6.3, but
with each shape being either a circle (with random location and radius) or a
rectangle (with random location, width, and height), with a 50% probability of
each shape. I recommend testing this with a slow clock tick, e.g. 5 seconds, so
you have time to try clicking in several places just outside various sides of the
shape to make sure they don’t count as hits.

Exercise 23.8.6 Define a data type zoo-animal which is either a monkey, a
lion, a sloth, or a dolphin. All four kinds have a name and a weight. Lions have
a numeric property indicating how much meat they need per day (in kilograms).
Monkeys have a string property indicating their favorite food (e.g. ”ants”, ”ba-
nanas”, or ”caviar”). Sloths have a Boolean property indicating whether they’re
awake.

Exercise 23.8.7 Develop a function underweight? that takes in a zoo-
animal and returns whether the animal in question is underweight. For this
particular kind of monkey, that means under 10 kg; for lions, 150 kg; for sloths,
it’s 30 kg; for dolphins, 50 kg.

Exercise 23.8.8 Develop a function can-put-in-cage? that takes in a
zoo-animal and a number (the weight capacity of the cage) and tells whether the

303

animal in question can be put into that cage. Obviously, if the weight of the
animal is greater than the weight capacity of the cage, the answer is false. But
sloths cannot be moved when they’re asleep, and dolphins can’t be put in a cage
at all.

Exercise 23.8.9 Define a data type vehicle which is either a car, a bicycle,
or a train. All three types of vehicle have a weight and a top speed; a bicycle
has a number of gears; a train has a length; and a car has a horsepower (e.g.
300) and a fuel-economy rating (e.g. 28 miles/gallon).

Exercise 23.8.10 Develop a function what? on vehicles....
TO DO: FILL THIS IN

23.9 Review

A struct is a data type made up of several “parts” or fields. An instance of a
data type is an individual object of that type — for example, 2/3, 5, and -72541
are all instances of the type number, while (make-posn 3 4) is an instance of
the type posn. The built-in function define-struct allows you to define a new
struct type, and also provides several functions to allow you to manipulate the
new type: a constructor which builds individual instances of the new data type;
several getters (one for each field) which retrieve the value of that field from an
instance of the new type; and a discriminator which tells whether something is
of the new type at all.

There’s a step-by-step recipe for defining a struct, just as for defining a
function or writing an animation:

1. Identify the parts, their names and types

2. Write a define-struct

3. Write the contracts for the constructor, getters, and discriminator

4. Write some examples

5. If you expect to write several functions involving the data type, write
input and output templates.

A function can not only take in but return instances of user-defined struct
types, as with posn. If you need to write such a function, the “inventory with
values” technique will be very useful.

Many animations need more than just two numbers in their models, so you
often need to define a struct type for the purpose.

The fields of a struct can be of any type, even another struct. This sometimes
allows you to better re-use previously-written functions (especially for posns).

Definition by choices becomes much more interesting when the choices can
themselves be user-defined types. Functions written to operate on such types
may be written in one of two ways: either one function per type, with a short

304

“main” function that simply decides which choice the input is and calls an
appropriate helper function, or as one big function with the helper functions
“collapsed” into the main function. The single-function approach may be more
convenient if the helper functions are all very short and simple, and if they are
unlikely to be needed on their own; otherwise, it’s usually safer and more flexible
to write one function per type.

Part IV

Definition by Self-reference

305

Chapter 24

Lists and functions on them

24.1 Limitations of structs

When we define a struct, among the first questions we ask is “how many parts
does the struct have?” This question assumes that the struct has a fixed number
of parts: a posn has two numbers, a person has two strings and a number, a
moving-x has a number and a symbol, In general, a struct is a way to
collect a fixed number of related pieces of information into one “package” that
we can pass around as a single object, and store in a single variable.

But what if we wanted to collect an unknown number of related pieces of
information into one “package”, pass it around as a single object, and store it in
a single variable? For example, consider the collection of students registered for
a particular course: if a student adds (or drops) the course, does that require
redefining the struct with one more (or fewer) field, then rewriting and retesting
every function that operated on the struct, since there are now one more (or one
fewer) getter functions, and every constructor call must now have one more (or
one fewer) argument than before? That seems ridiculous: one should be able to
write software once and for all to work on a collection of students, allowing the
number of students to change while the program is running.

There are many other ways to collect related pieces of information into a
package, of which perhaps the simplest is a “list”.

24.2 What is a list?

You’re all familiar with lists in daily life: lists of friends, lists of schools or jobs
to apply to, lists of groceries to buy, lists of things to pack before going on a
trip. In each case, a list is not changed in any fundamental way by changing
the number of items in it. A list can be reduced to 1 or 0 items, and then have
more items added to it later; reducing it to 1 or even 0 items didn’t make it
stop being a list.

307

308

This fact — that a list can have as few as 0 elements — underlies the way
we’ll define lists in Scheme. Here are three apparently-obvious facts about lists:

1. A list is either empty or non-empty.

Not terribly exciting, although it suggests that we’ll do some kind of def-
inition by choices with two cases: empty and non-empty.

2. An empty list has no parts.

Again, not terribly exciting. The next one is a little more interesting:

3. A non-empty list has a first element. It also has “the rest” of

the list, i.e. everything after the first element.

This looks like a definition by parts: there are two parts, the “first” el-
ement and the “rest”. What types are these parts? If we were defining
a list of numbers, obviously, the “first” element would be a number; in
a list of strings, the “first” element would be a string. But what about
the “rest”? If the list consists of only one element, the “rest” should be
empty; if the list consists of two elements, the “rest” contains one element;
and so on. In other words, the “rest” of a non-empty list is a list (either
empty or non-empty).

When we introduced “definition by choices” and “definition by parts”, we
said they were ways to define a new data type from previously-defined data
types. We’ve loosened that requirement a bit now: the list data type is defined
by choices from the non-empty-list data type, which is defined by parts from
(among other things) the list data type. Neither data type can be “previous”
to the other, because each depends on the other. However, if we’re willing to
define both at once, we can get a tremendous amount of programming power.

24.3 Defining lists in Scheme

In this section we’ll develop a definition of lists, and learn to write functions
on them, using only what you already know about definition by parts and by
choices. The resulting definition is a little awkward to work with, so in the next
section we’ll discuss the more practical version of lists that’s built into Scheme.
If you prefer to “cut to the chase,” you can skip this section.

For concreteness, we’ll define a list of strings; you can also define a list of
numbers, or symbols, or booleans, or even lists similarly. We’ll use “los” as
shorthand for “list of strings”.

24.3.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.”
This is a definition by choices with two choices. It tells us that for any function
that takes in a list of strings, we’ll need an empty test case and at least one

309

non-empty test case. (In fact, we’ll usually want at least three test cases: an
empty example, an example of length 1, and at least one longer list.) It also
tells us that the body of a function on lists of strings will probably involve a
two-way cond, deciding between the empty and non-empty cases:

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists, “An empty list has no parts,” can be represented
in Scheme by defining a struct with no parts:

; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

#|

(define (function-on-empty-list L)

; L an empty-list

...)

|#

This looks a little weird, admittedly: we’ve never before defined a struct with
no parts at all. The purpose of this data type is simply that we can create an
empty list, and recognize it when we see it.

Note that I haven’t specified that an empty-list is an empty-list of strings:
since it doesn’t contain anything anyway, an empty-list of strings can be exactly
the same as an empty-list of numbers or anything else.

In practice, there’s seldom much point in writing a function whose only input
is an empty list. All empty lists contain exactly the same information, so such
a function would have to return the same answer in all cases, so why bother
writing a function? So we’ll skip the function-on-empty-list template from now
on.

Now for the third fact about lists: “A non-empty list has two parts: the first
element and the rest.” More specifically: “A non-empty list of strings has two
parts: the first element (a string) and the rest (a list of strings).” This seems
to call for definition by parts. I’ll use “nelos” as shorthand for “non-empty list
of strings”.

310

; A nelos has two parts: first (a string) and rest (a los)

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

Note that since (nelos-rest L) is a list of strings, the obvious thing to do to
it is call some function that works on a list of strings, like function-on-los.
It’s quite useful to include this in the inventory, as we’ll see shortly.

With this information, we can write the complete data definition, with input
templates for both los and nelos, fairly concisely:

; A los is either (make-empty-list) or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

)) |#

; A nelos looks like

; (make-nelos string los)

#|

(define (function-on-nelos L)

; L a cons

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 25.)
Note that once a los has been determined to be non-empty, the obvious

thing to do to it is call some function that works on non-empty lists, like
function-on-nelos.

Note also that because the los and nelos data types refer to one another,
the function-on-los and function-on-nelos templates refer to one another
in a corresponding way.

311

24.3.2 Examples of the los data type

As with any new data type, we should make up some examples to make things
feel more real and concrete. We’ll need at least one empty example, which we
can build with make-empty-list:

(define nothing (make-empty-list))

and at least one non-empty example, which we can build with make-nelos.
The make-nelos function expects two arguments: a string and a los. The only
los we already have is nothing, so

(define english (make-nelos "hello" nothing))

This represents a list of strings whose first element is "hello" and whose rest
is an empty list, so there is no second element.

Suppose we wanted a list with "buenos dias" as its first element and
"hello" as the second and last. This is easy by calling make-nelos:

(define span-eng (make-nelos "buenos dias" english))

We can go on to build even longer lists, as shown in Figure 24.1.

Practice Exercise 24.3.1 Copy Figure 24.1 into your Definitions pane (it
should be available as a download from the textbook Web site), and try the follow-
ing expressions. For each one, predict what it will return before hitting ENTER,
and see whether you were right. If not, figure out why the answer was what it
was before going on.

• (empty-list? nothing)

• (nelos? nothing)

• (nelos-first nothing)

• (nelos-rest nothing)

• (empty-list? english)

• (nelos? english)

• (nelos-first english)

• (nelos-rest english)

• (empty-list? (nelos-rest english))

• (nelos? span-eng)

• (nelos-first span-eng)

• (nelos-rest span-eng)

• (nelos? (nelos-rest span-eng))

• (nelos-first (nelos-rest span-eng))

312

Figure 24.1: Defining the list-of-strings data type
; An empty list has no parts.

(define-struct empty-list ())

; make-empty-list : nothing -> empty-list

; empty-list? : anything -> boolean

; A nelos has two parts: first (a string) and rest (a los).

(define-struct nelos (first rest))

; make-nelos : string los -> nelos

; nelos-first : nelos -> string

; nelos-rest : nelos -> los

; nelos? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define nothing (make-empty-list))

(define english (make-nelos "hello" nothing))

(define span-eng (make-nelos "buenos dias" english))

(define heb-span-eng (make-nelos "shalom" span-eng))

(define fhse (make-nelos "bonjour" heb-span-eng))

(define afhse (make-nelos "salaam" fhse))

(define dwarfs (make-nelos "sleepy" (make-nelos "sneezy"

(make-nelos "dopey" (make-nelos "doc" (make-nelos "happy"

(make-nelos "bashful" (make-nelos "grumpy" nothing))))))))

313

• (nelos-rest (nelos-rest span-eng))

• (nelos? afhse)

• (nelos-first afhse)

• (nelos-rest afhse)

• (nelos-first (nelos-rest (nelos-rest afhse))))

• (nelos-first (nelos-rest (nelos-rest (nelos-rest dwarfs))))

24.3.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong
question: our templates above show two functions, function-on-los and function-
on-nelos, which depend on one another, so when we write a specific function, it
too will probably consist of two functions that depend on one another.

Worked Exercise 24.3.2 Define a function count-strings that takes in a
los and returns how many strings are in it: 0 for an empty list, 1 for a list of
one element, and so on.

Solution: We’ll write two functions: count-strings that works on a los, and
count-strings-on-nelos that works on a nelos. Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.

Test cases:

(check-expect (count-strings nothing) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings span-eng) 2)

(check-expect (count-strings afhse) 5)

(check-expect (count-strings dwarfs) 7)

; can’t call (count-strings-on-nelos nothing)

; because nothing isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos span-eng) 2)

(check-expect (count-strings-on-nelos afhse) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories: Conveniently, we already have templates that
do most of the work for us:

314

(define (count-strings L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L)) a number

...)

Note that count-strings and count-strings-on-nelos refer to one another
in the same way function-on-los and function-on-nelos refer to one an-
other, which in turn corresponds to the way los and nelos refer to one another.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one,
the answer in the (empty-list? L) case, is easy: an empty list has a length of
0. (We could write a count-strings-on-empty-list function to do this, but
that seems like too much work just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory,
we have an expression for the number of strings in the rest of the list. So how
many strings are there in the whole list? Obviously, one more than in the rest
of the list:

(define (count-strings-on-nelos L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L)) a number

(+ 1 (count-strings (nelos-rest L))))

Run the test cases, and they should all work correctly. Use the Stepper
to watch the computation for some non-trivial examples, like (count-strings

fhse).

24.3.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only
new thing here is that the auxiliary function depends on the original function
in turn. And it’s perfectly natural that when we’re working with two different

315

data types, we have to write two different functions. However, the only place
count-strings-on-nelos is used is inside count-strings, so if we prefer, we
can replace the call to count-strings-on-nelos with its body:

(define (count-strings L)

; L a los

(cond [(empty-list? L) 0]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (count-strings (nelos-rest L)) a number

(+ 1 (count-strings (nelos-rest L)))]

))

Note that now the count-strings function calls itself. Some of you may
have written functions in the past that called themselves, and the most likely re-
sult was something called an “infinite loop”: the function called itself to answer
the same question, then called itself to answer the same question, then called
itself to answer the same question, and never accomplished anything. What
we’ve done here is different: rather than calling the function to answer the same
question, we’re calling it to answer a smaller question, then using the result to
figure out the answer to the original question.

316

SIDEBAR:

Computer scientists use the word “recursion” for a function that calls it-
self, or (for that matter) for two or more functions that call one another.
Generations of computer science students have been mystified by recursion,
often because they try to think through the entire computation at once. It
seems to work better to think about only one level at a time. Concentrate
on making sure that if you have a correct answer for the rest of the list,
you can construct a correct answer for the whole list.

If this bothers you, here’s a justification (relying on the mathematical
proof technique called “proof by contradiction”). Suppose we wrote a func-
tion this way and it didn’t work correctly, i.e. there was at least one legal
input on which it produced a wrong answer. Then there must be a shortest
legal input on which it produces a wrong answer. This shortest “bad” input
can’t be the empty list, because we know the function produces the right
answer on the empty list. So whatever the shortest “bad” input is, the
function must produce correct answers on all shorter lists. Since the “rest”
of this list is shorter than the whole list, the function must be correct on
it, so we can legitimately assume that the call on the rest of the list pro-
duces a right answer. If we can convince ourselves that the function always
produces a correct answer for the whole list from a correct answer for the
rest of the list, then it must produce a correct answer to the shortest “bad”
input, which contradicts the assumption that it produces a wrong answer
on this input. Thus our assumption that the function sometimes produces
wrong answers leads to an impossibility, so the assumption must be wrong,
i.e. the function is always correct.

The single-function solution is usually shorter and simpler, but later on we’ll
encounter situations in which we have to use the two-function solution, so you
should know both approaches.

In order to write functions on lists as a single function rather than two, we
must likewise collapse the two templates into one:

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L)

; L a nelos

; (nelos-first L) a string

; (nelos-rest L) a los

; (function-on-los (nelos-rest L)) whatever this returns

...]))

|#

317

24.4 The way we really do lists

The approach taken in Section 24.3 works, but it’s rather awkward to work
with. Lists are so common and useful that they’re built into Scheme; in reality,
most Scheme programmers use the built-in list functions rather than defining a
list data type themselves.

As in section 24.3, we’ll define a list of strings for concreteness. You can also
define a list of numbers, or symbols, or booleans, or even lists similarly. We’ll
use “los” as shorthand for “list of strings”.

24.4.1 Data definitions

Recall our first fact about lists: “a list [of strings] is either empty or non-empty.”
This is a definition by choices, with two choices. It tells us that for any function
that takes in a list of strings, we’ll need an empty test case and at least one
non-empty test case. (In fact, we’ll usually want at least three test cases: an
empty example, an example of length 1, and at least one longer list.) It also
tells us that the body of a function on lists of strings will probably involve a
two-way cond, deciding between the empty and non-empty cases:

#|

(define (function-on-los L)

; L a list of strings

(cond [... ...]

[... ...]

))

|#

The second fact about lists is “An empty list has no parts.” Scheme provides
a built-in constant empty and a built-in function empty? to represent and
recognize empty lists, respectively.

; empty : a constant that stands for an empty list

; empty? : anything -> boolean

Now for the third fact about lists: “A non-empty list has two parts: the
first element and the rest.” Let’s make it more specific: “A non-empty list of
strings has two parts: the first element (a string) and the rest (a list of strings).”
This seems to call for definition by parts. For convenience, Scheme has a built-in
data type to represent a non-empty list. Since putting one non-empty list inside
another is the usual way to “construct” a large list, we use the word cons (short
for “construct”). Scheme provides the following built-in functions:

318

; A non-empty list, or cons, has two parts:

; first (whatever type the elements are) and

; rest (a list)

; cons : element list -> non-empty-list

; first : non-empty-list -> element

; rest : non-empty-list -> list

; cons? : anything -> boolean

With this information, we can write the complete data definition, with input
templates for both los and nelos, fairly concisely:

; A los is either empty or a nelos

#|

(define (function-on-los L)

; L a list of strings

(cond [(empty? L) ...]

[(cons? L) (function-on-nelos L)]

)) |#

; A nelos looks like

; (cons string los)

#|

(define (function-on-nelos L)

; L a cons

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

(We’ll come back to the output template in Chapter 25.)
Note that because the los and nelos data types refer to one another, the

function-on-los and function-on-nelos templates refer to one another in a
corresponding way.

24.4.2 Examples of the los data type

As with any new data type, we should make up some examples to make things
feel more real and concrete. We have empty to provide an empty example.
We’ll need to build non-empty examples using cons, which (in our list-of-strings
example) expects a string and a list of strings. The only list of strings we already
have is empty, so we’ll use that:

(define english (cons "hello" empty))

This represents a list of strings whose first element is "hello" and whose rest
is an empty list, so there is no second element.

319

Suppose we wanted a list with "buenos dias" as its first element and
"hello" as the second and last. This is easy by calling cons:

(define span-eng (cons "buenos dias" english))

We can go on to build even longer lists, as shown in Figure 24.2.

Practice Exercise 24.4.1 Copy Figure 24.2 into your Definitions pane (it
should be available as a download from the textbook Web site), and try the follow-
ing expressions. For each one, predict what it will return before hitting ENTER,
and see whether you were right. If not, figure out why the answer was what it
was before going on.

• (empty? empty)

• (cons? empty)

• (first empty)

• (rest empty)

• (empty? english)

• (cons? english)

• (first english)

• (rest english)

• (empty? (rest english))

• (cons? span-eng)

• (first span-eng)

• (rest span-eng)

• (cons? (rest span-eng))

• (first (rest span-eng))

• (rest (rest span-eng))

• (cons? afhse)

• (first afhse)

• (rest afhse)

• (first (rest (rest afhse))))

• (first (rest (rest (rest dwarfs))))

320

Figure 24.2: Lists of strings, using built-in Scheme features
; An empty list has no parts.

; empty : a constant

; empty? : anything -> boolean

; A cons has two parts: first (a string) and rest (a los).

; cons : string los -> nelos

; first : nelos -> string

; rest : nelos -> los

; cons? : anything -> boolean

#|

(define (function-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...)

|#

; A los is either an empty-list or a nelos.

#|

(define (function-on-los L)

; L a los

(cond [(empty-list? L) ...]

[(nelos? L) (function-on-nelos L)]

))

|#

(define english (cons "hello" empty))

(define span-eng (cons "buenos dias" english))

(define heb-span-eng (cons "shalom" span-eng))

(define fhse (cons "bonjour" heb-span-eng))

(define afhse (cons "salaam" fhse))

(define dwarfs (cons "sleepy" (cons "sneezy" (cons "dopey" (cons "doc"

(cons "happy" (cons "bashful" (cons "grumpy" empty))))))))

321

24.4.3 Writing a function on los

How would we write a function on the los data type? In a way, this is the wrong
question: our templates above show two functions, function-on-los and function-
on-nelos, which depend on oone another, so when we write a specific function,
it too will probably consist of two functions that depend on one another.

Worked Exercise 24.4.2 Define a function count-strings that takes in a
los and returns how many strings are in it: 0 for an empty list, 1 for a list of
one element, and so on.

Solution: We’ll write two functions: count-strings that works on a los, and
count-strings-on-nelos that works on a nelos.

Contracts:

; count-strings : los -> number

; count-strings-on-nelos : nelos -> number

The data analysis is already done.
Test cases:

(check-expect (count-strings empty) 0)

(check-expect (count-strings english) 1)

(check-expect (count-strings span-eng) 2)

(check-expect (count-strings afhse) 5)

(check-expect (count-strings dwarfs) 7)

; can’t call (count-strings-on-nelos empty)

; because empty isn’t a nelos

(check-expect (count-strings-on-nelos english) 1)

(check-expect (count-strings-on-nelos span-eng) 2)

(check-expect (count-strings-on-nelos afhse) 5)

(check-expect (count-strings-on-nelos dwarfs) 7)

Skeletons and Inventories: Conveniently, we already have templates that
do most of the work for us:

(define (count-strings L)

; L a los

(cond [(empty? L) ...]

[(cons? L) (count-strings-on-nelos L)]

))

(define (count-strings-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

...)

322

Note that count-strings and count-strings-on-nelos refer to one another
in the same way function-on-los and function-on-nelos refer to one an-
other, which in turn corresponds to the way los and nelos refer to one another.

Now we just need to fill in everywhere that there’s a “. . . ”. The first one,
the answer in the (empty? L) case, is easy: an empty list has a length of 0.
(We could write a count-strings-on-empty-list function to do this, but that
seems like too much work just to get the answer 0.)

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L) (count-strings-on-nelos L)]

))

The other “. . . ” is the body of count-strings-on-nelos. From the inventory,
we have an expression for the number of strings in the rest of the list. So how
many strings are there in the whole list? Obviously, one more than in the rest
of the list:
(define (count-strings-on-nelos L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

(+ 1 (count-strings (rest L))))

Run the test cases, and they should all work correctly. Use the Stepper
to watch the computation for some non-trivial examples, like (count-strings

fhse).

24.4.4 Collapsing two functions into one

We’ve written functions before that depended on auxiliary functions; the only
new thing here is that the auxiliary function depends on the original function
in turn. And it’s perfectly natural that when we’re working with two different
data types, we have to write two different functions. However, the only place
count-strings-on-nelos is used is inside count-strings, so if we prefer, we
can replace the call to count-strings-on-nelos with its body:

(define (count-strings L)

; L a los

(cond [(empty? L) 0]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (count-strings (rest L)) a number

(+ 1 (count-strings (rest L)))]

))

323

Note that now the count-strings function calls itself. Some of you may
have written functions in the past that called themselves, and the most likely re-
sult was something called an “infinite loop”: the function called itself to answer
the same question, then called itself to answer the same question, then called
itself to answer the same question, and never accomplished anything. What
we’ve done here is different: rather than calling the function to answer the same
question, we’re calling it to answer a smaller question, then using the result to
figure out the answer to the original question.

Again, it’s a matter of personal preference whether you solve a problem
like this with two functions that call one another, or one that calls itself; do
whichever makes more sense to you. They both work.

In order to write functions on lists as a single function rather than two, we
must likewise collapse the two templates into one:
#|

(define (function-on-los L)

; L a los

(cond [(empty? L) ...]

[(cons? L)

; L a nelos

; (first L) a string

; (rest L) a los

; (function-on-los (rest L)) whatever this returns

...]))

|#

24.5 Lots of functions to write on lists

So far we’ve seen how to solve only one problem on lists, i.e. counting how
many strings are in a list of strings. We’ve seen slightly different definitions
depending on whether we define our own structs or use Scheme’s built-in list
features, and on whether we write it as two functions that call one another
or one function that calls itself, but it’s still only one problem. To really get
the hang of writing functions on lists, you’ll need to practice on a number of
examples.

I’ve described these examples using Scheme’s built-in list features; they could
of course be written to use the empty-list and nelos structures defined in
section 24.3, but the definitions would be longer and harder to understand.

Worked Exercise 24.5.1 Define a data type list-of-numbers (or lon for short),
including a template for functions operating on lists of numbers. Develop a
function count-numbers that takes in a list of numbers and returns a number.

Solution: The data definition is similar to that for list-of-strings:

324

; A list-of-numbers is either

empty or

a nelon (non-empty list of numbers).

#|

(define (function-on-lon L)

; L a list of numbers

(cond [(empty? L) ...]

[(cons? L) (function-on-nelon L)]

))

|#

; A nelon looks like

; (cons number lon)

#|

(define (function-on-nelon L)

; L a cons

; (first L) a number

; (rest L) a lon

; (function-on-lon (rest L)) whatever this returns

...)

|#

And not surprisingly, the function definition is extremely similar to that for
count-strings:

; count-numbers : lon -> number

(check-expect (count-numbers empty) 0)

(check-expect (count-numbers (cons -4 empty)) 1)

(check-expect

(count-numbers (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

(check-expect (count-numbers-on-nelon (cons -4 empty)) 1)

(check-expect

(count-numbers-on-nelon (cons 5 (cons 2 (cons 8 (cons 6 empty)))))

4)

325

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L) (count-numbers-on-nelon L)]

))

(define (count-numbers-on-nelon L)

; L a nelon

; (first L) a string

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L))))

or, writing it more simply as a single function,

(define (count-numbers L)

; L a lon

(cond [(empty? L) 0]

[(cons? L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (count-numbers (rest L)) a number

(+ 1 (count-numbers (rest L)))]

))

In fact, aside from its name, this function is identical to count-strings:
neither one actually makes any use of the type of the elements, so either one
would work on a list of any type. There’s a built-in Scheme function length

that does the same job, and now that you’ve seen how you could have written
it yourself, you should feel free to use the built-in length function.

The next example is more interesting, and depends on the type of the ele-
ments.

Worked Exercise 24.5.2 Develop a function add-up that takes in a list of
numbers and returns the result of adding them all together. For example,

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

Solution: We already have the data definition for list-of-numbers, so we’ll go
on to the function. The contract, examples, skeleton, and inventory are easy:

326

; add-up : list-of-numbers -> number

(check-expect (add-up empty) 0)

(check-expect (add-up (cons 14 empty)) 14)

(check-expect (add-up (cons 3 (cons 4 empty))) 7)

(check-expect (add-up (cons 4 (cons 8 (cons -3 empty)))) 9)

(define (add-up L)

; L a lon

(cond [(empty? L) ...]

[(cons? L) (add-up-nelon L)]

))

(define (add-up-nelon L)

; L a nelon

; (first L) a number

; (rest L) a lon

; (add-up (rest L)) a number

...

)

We need to fill in the two “. . . ” gaps. The answer to the empty case is obviously
0. For the other “. . . ”, let’s try an inventory with values:

(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

...

)

So how can you get the right answer, 9, from the things above it? The two
lists don’t look promising, but the numbers 4 and 5 do: we can get 9 by adding
the 4 (i.e. (first L)) and the 5 (i.e. (add-up (rest L))). This suggests the
definition
(define (add-up-nelon L)

; L nelon (cons 4 (cons 8 (cons -3 empty)))

; (first L) number 4

; (rest L) lon (cons 8 (cons -3 empty))

; (add-up (rest L)) number 5

; right answer number 9

(+ (first L) (add-up (rest L)))

)

Does this make sense? Should the sum of a list of numbers be the same as
the first number plus the sum of the rest of the numbers? Of course. Test the
function, and it should work on all legal inputs.

Here’s a shorter single-function version, developed the same way.

327

(define (add-up L)

; L lon

(cond [(empty? L) 0]

[(cons? L)

; L nelon

; (first L) number

; (rest L) lon

; (add-up (rest L)) number

(+ (first L) (add-up (rest L)))

))

Exercise 24.5.3 Develop a function any-matches? that takes in a string and
a list of strings and tells whether any of the strings in the list is the same as the
given string. For example,

(check-expect

(any-matches? "fnord" (cons "snark" (cons "boojum" empty)))

false)

(check-expect

(any-matches? "fnord" (cons "snark" (cons "fnord" empty)))

true)

Hint: The templates for operating on lists use a conditional to decide whether
you’ve got an empty or a non-empty list. This function needs to make another
decision: does the current string match the target or not? You can do this with
another conditional, or (since this function returns a boolean), you can do it
more simply without the extra conditional.

Exercise 24.5.4 Develop a function count-matches that takes in a string
and a list of strings and tells how many (possibly zero) of the strings in the list
are the same as the given string. For example,
(check-expect

(count-matches "cat" (cons "dog" (cons "cat" (cons "fish"

(cons "cat" (cons "cat" (cons "wombat" empty)))))))

3)

Hint: For this one, you probably will need a nested conditional.

Exercise 24.5.5 Develop a function count-votes-for-name that takes in a
string (the name of a candidate) and a list of strings (the votes cast by a bunch
of voters) and tells how many of the voters voted for this particular candidate.

Hint: This is really easy if you re-use previously-written functions.

328

Exercise 24.5.6 Develop a function count-over which takes in a number
and a list of numbers, and tells how many of the numbers in the list are larger
than the specified number.

Exercise 24.5.7 Develop a function average that takes in a list of numbers
and returns their average, i.e. their sum divided by how many there are. For
this problem, you may assume there is at least one number in the list.

Hint: Not every function on lists can best be written by following the tem-
plates . . .

Exercise 24.5.8 Develop a function safe-average that takes in a list of
numbers and returns their average; if the list is empty, it should signal an error
with an appropriate and user-friendly message.

Exercise 24.5.9 Develop a function convert-reversed that takes in a list of
numbers. You may assume that all the numbers are integers in the range 0-9,
i.e. decimal digits. The function should interpret them as digits in a decimal
number, ones place first (trust me, this actually makes the problem easier!), and
returns the number they represent. For example,
(check-expect

(convert-reversed (cons 3 (cons 0 (cons 2 (cons 5 empty)))))

5203)

Exercise 24.5.10 Develop a function multiply-all that takes in a list of
numbers and returns the result of multiplying them all together. For example,
(check-expect (multiply-all (cons 3 (cons -5 (cons 4 empty)))) -60)

Hint: What is the “right answer” for the empty list? It may not be what you
think at first!

Exercise 24.5.11 Develop a function all-match? that takes in a string and
a list of strings, and tells whether all the strings in the list match the given
string. For example,

(check-expect

(all-match? "cat" (cons "cat" (cons "dog" (cons "cat" empty))))

false)

(check-expect

(all-match? "cat" (cons "cat" (cons "cat" empty)))

true)

Exercise 24.5.12 Develop a function general-bullseye that takes in a list
of numbers and produces a white image with black concentric rings at those radii.

Hint: I recommend using an empty image like (circle 0 "solid" "white")

as the answer for the empty case.

329

Exercise 24.5.13 Develop an animation that displays a bull’s-eye pattern
of black rings on a white background. Each second, an additional ring will be
added, three pixels outside the previous outer ring.

Hint: Use a list of numbers as the model. For your tick handler, write a
function which takes in a list of numbers and sticks one more number onto the
front of the list, equal to three times the length of the existing list.

Exercise 24.5.14 Develop an animation that displays a bull’s-eye pattern,
as in Exercise 24.5.13, but each second, an additional ring will be added at a
random radius.

Exercise 24.5.15 Develop a function largest which takes in a list of num-
bers and returns the largest one.

Hint: This function doesn’t really make sense on an empty list, so the input
data type is really “non-empty list of numbers,” and the simplest test case
should be a one-element list. Since largest doesn’t make sense on an empty
list, you should be careful never to call it on an empty list. One good way to
ensure this is for your function to ask not whether the given list is empty or
not, but rather whether the rest of the given list is empty or not, before doing
anything with the rest of the list.

Exercise 24.5.16 Write a data definition, including templates, for a list
of lists of strings. Write several examples of this data type.

Develop a function total-length which takes in a list of lists of strings
and returns the total number of strings appearing in all the lists put together.

Develop a function longest which takes in a non-empty list of lists of
strings and returns the longest of the lists. If there are two or more of the same
maximum length, it may return either one at your choice.

Exercise 24.5.17 Write a data definition, including templates, for a gen-
eral list, in which each element may be either a simple object (like a string or a
number) or another general list.

Develop a function count-simple-objects which takes in a general list
and returns the total number of simple objects contained in it, no matter how
many levels of nested lists they’re inside.

Develop a function max-nesting-depth which takes in a general list and
returns its maximum nesting depth: empty has a nesting depth of 0, a list of
simple objects has a nesting depth of 1, a list that contains some lists of simple
elements has a nesting depth of 2, etc.

It can be difficult to read and write the test cases for Exercises 24.5.16 and
24.5.17. In Chapter 26 we’ll learn a more compact notation for lists that makes
this easier.

330

24.6 Lists of structs

As we’ve seen, writing a function to work on a list of numbers is almost exactly
like writing a function to work on a list of strings. Not surprisingly, writing a
function to work on a list of posns, or employees, or other types like that isn’t
much harder.

Worked Exercise 24.6.1 Develop a function any-on-diag? which takes
in a list of posn structures and tells whether any of them are “on the diagonal,”
i.e. have x and y coordinates equal to one another.

Solution: The data definition is straightforward:

; A list-of-posns is either

empty or

a nelop (non-empty list of posns).

#|

(define (function-on-lop L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (function-on-nelop L)]

))

|#

; A nelop looks like

; (cons posn lop)

#|

(define (function-on-nelop L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (function-on-lop (rest L)) whatever this returns

...)

|#

For test cases, we need an empty list and at least two or three non-empty
lists: at least one with right answer true and at least one with right answer
false.

331

(check-expect (any-on-diag? empty) false)

(check-expect (any-on-diag? (cons (make-posn 5 6) empty)) false)

(check-expect (any-on-diag? (cons (make-posn 5 5) empty)) true)

(check-expect

(any-on-diag? (cons (make-posn 5 6) (cons (make-posn 19 3) empty)))

false)

(check-expect

(any-on-diag? (cons (make-posn 5 6) (cons (make-posn 19 19) empty)))

true)

(check-expect

(any-on-diag? (cons (make-posn 5 5) (cons (make-posn 19 3) empty)))

true)

The function templates give us a good start on writing the any-on-diag?

function:

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) ...]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

The right answer for the empty list is false (that was one of our test cases),
so we can fill that in immediately. And the obvious question to ask about the
posn is “are the x and y coordinates equal?”, i.e. (= (posn-x (first L))

(posn-y (first L))), so we’ll add that to the template too:

332

(define (any-on-diag? L)

; L a list of posns

(cond [(empty? L) false]

[(cons? L) (any-on-diag-nelop? L)]

))

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (= (posn-x (first L)) (posn-y (first L))) a boolean

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

...)

Now let’s try an inventory with values. In fact, since the function has to
return a boolean, we’ll do two inventories-with-values, one returning true and
one returning false:
(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 6) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 6)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 6

; (= (posn-x (first L)) (posn-y (first L))) a boolean false

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean false

...)

(define (any-on-diag-nelop? L)

; L a cons (cons (make-posn 5 5) (cons (make-posn 19 3) empty))

; (first L) a posn (make-posn 5 5)

; (posn-x (first L)) a number 5

; (posn-y (first L)) a number 5

; (= (posn-x (first L)) (posn-y (first L))) a boolean true

; (rest L) a lop (cons (make-posn 19 3) empty)

; (any-on-diag? (rest L)) a boolean false

; right answer a boolean true

...)

What expression could we fill in for the “. . . ” that would produce the right
answer in both cases? Well, the right answer is a boolean, and there are two
booleans above it in the inventory. The most common ways to combine booleans
to get another boolean are and and or. In this case or gives the right answer:

333

(define (any-on-diag-nelop? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (= (posn-x (first L)) (posn-y (first L))) a boolean

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L)))

Test the function(s), and you should get correct answers.
If you prefer to solve this as a single function, the process is similar, but the

end result is

(define (any-on-diag? L)

; L a list of posns

(cond[(empty? L) false]

[(cons? L)

; L a cons

; (first L) a posn

; (posn-x (first L)) a number

; (posn-y (first L)) a number

; (= (posn-x (first L)) (posn-y (first L))) a boolean

; (rest L) a lop

; (any-on-diag? (rest L)) a boolean

(or (= (posn-x (first L)) (posn-y (first L)))

(any-on-diag? (rest L)))

]))

Exercise 24.6.2 Develop a function any-over-100K? which takes in a list
of employee structures (from Exercise 23.2.1) and tells whether any of them
earn over $100,000 per year.

Exercise 24.6.3 Develop a function total-votes which takes in a list of
candidate structures (from Exercise 23.3.2) and returns the total number of
votes cast in the election.

Exercise 24.6.4 Develop a function avg-votes which takes in a list of
candidate structures and returns the average number of votes for each can-
didate.

Hint: This doesn’t have a reasonable answer if there are no candidates. How
do you want to handle this case?

334

Exercise 24.6.5 Develop a function winner which takes in a list of candidate
structures and returns the one with the most votes. If there are two or more
tied for first place, you can return whichever one you wish.

Hint: This doesn’t have a reasonable answer if there are no candidates. How
do you want to handle this case?

Exercise 24.6.6 Develop an animation similar to Exercise 22.6.4, but ev-
ery few seconds a dot is added to the screen (in addition to whatever dots are
already there), and if you click inside any of the existing dots, the game ends.
(The game will be easy to win, since pretty soon the screen fills with dots so it’s
hard not to hit one.)

Hint: Use a list of posns as the model.

24.7 Review

Whereas a structure collects a fixed number of related pieces of information into
one object, a list allows you to collect a variable number of related pieces of in-
formation into one object. The list data type is defined by combining techniques
we’ve already seen: definition by choices (is it empty or not?) and definition by
parts (if it’s non-empty, it has a first and a rest, which is itself a list). We al-
ready know how to write functions on data types defined by choices, and defined
by parts; the new feature is that since a list really involves two interdependent
data types, a function on lists is often written as two interdependent functions.
However, since one of these is generally only used in one place in the other, we
can often make the program shorter and simpler by combining the two functions
into one that calls itself on the rest of the list.

Chapter 25

Functions that return lists

If you did exercises 24.5.13 or 24.5.14, you’ve already written some functions
that return lists, but only in a very simple way: adding one new element to the
front of an existing list. In this chapter we’ll discuss functions that construct
an entire list as their results.

25.1 Doing something to each element

Worked Exercise 25.1.1 Develop a function add1-each which takes in a
list of numbers and returns a list of numbers of the same length, with each
element of the answer equal to 1 more than the corresponding element of the
input. For example,

(check-expect (add1-each (cons 3 (cons -12 (cons 7 empty))))

(cons 4 (cons -11 (cons 8 empty))))

Solution: For brevity, I’ll write this as a single function; the two-function ver-
sion is quite similar. The contract, skeleton, and inventory are straightforward:

(define (add1-each nums)

; nums lon

(cond [(empty? nums) ...]

[(cons? nums)

; nums nelon

; (first nums) number

; (rest nums) lon

; (add1-each (rest nums)) lon

...]

))

The answer to the empty case is obviously empty (since the result has to be the
same length as the input). To fill in the non-empty case, let’s do an inventory
with values:

335

336

[(cons? nums)

; nums (cons 3 (cons -12 (cons 7 empty)))

; (first nums) 3

; (rest nums) (cons -12 (cons 7 empty))

; (add1-each (rest nums)) (cons -11 (cons 8 empty))

; right answer (cons 4 (cons -11 (cons 8 empty)))

...]

))

Notice that the recursive call (add1-each (rest nums)) gives you most of the
right answer, but it’s missing a 4 at the front. Where could the 4 come from?
Since (first nums) in this example is 3, an obvious choice is (+ 1 (first

nums)).
[(cons? nums)

; nums (cons 3 (cons -12 (cons 7 empty)))

; (first nums) 3

; (rest nums) (cons -12 (cons 7 empty))

; (add1-each (rest nums)) (cons -11 (cons 8 empty))

; right answer (cons 4 (cons -11 (cons 8 empty)))

(cons (+ 1 (first nums))

(add1-each (rest nums)))]

))

Test this, and it should work on all legal inputs.

Exercise 25.1.2 Develop a function square-each which takes in a list of
numbers and returns a list of their squares, in the same order.

Exercise 25.1.3 Develop a function string-lengths which takes in a list
of strings and returns a list of their (numeric) lengths, in the same order.

Exercise 25.1.4 Develop a function stutter which takes in a list of any-
thing (it doesn’t matter whether they’re strings, numbers, or something else)
and returns a list twice as long, with each element repeated twice in a row. For
example,

(check-expect (stutter (cons 5 (cons 2 (cons 9 empty))))

(cons 5 (cons 5 (cons 2 (cons 2 (cons 9 (cons 9 empty)))))))

Exercise 25.1.5 Develop a function list-each which takes in a list (of
numbers, strings, symbols, it doesn’t matter) and returns a list of one-element
lists, each containing a different one of the elements in the original list. For
example,

(check-expect (list-each (cons "a" (cons "b" empty)))

(cons (cons "a" empty) (cons (cons "b" empty) empty)))

337

25.2 Making decisions on each element

In some problems, you need to make a decision about each element of a list,
using a conditional. As with Exercises 24.5.4, 24.5.6, etc., this conditional is
usually nested inside the one that decides whether the list is empty or not.

Exercise 25.2.1 Develop a function substitute which takes in two strings
and a list of strings, and returns a list the same length as the given list, but with
all occurrences of the first string replaced by the second. For example,
(check-expect

(substitute "old" "new" (cons "this" (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old" (cons "blue"

empty))))))))

(cons "this (cons "that" (cons "new" (cons "new"

(cons "borrowed" (cons "new" (cons "blue" empty)))))))

Exercise 25.2.2 Develop a function remove-all which takes in a string
and a list of strings, and returns the same list but with all occurrences (if there
are any) of the given string removed. For example,
(check-expect

(remove-first "old" (cons "this (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old"

(cons "blue" empty))))))))

(cons "this" (cons "that" (cons "new" (cons "borrowed"

(cons "blue" empty)))))))

Exercise 25.2.3 Develop a function remove-first which takes in a string
and a list of strings, and returns the same list but with the first occurrence (if
any) of the given string removed. For example,
(check-expect

(remove-first "old" (cons "this (cons "that" (cons "old"

(cons "new" (cons "borrowed" (cons "old"

(cons "blue" empty))))))))

(cons "this" (cons "that" (cons "new" (cons "borrowed"

(cons "old" (cons "blue" empty)))))))

Exercise 25.2.4 Develop a function add-vote-for which takes in a string
(representing a candidate’s name) and a list of candidate structures, and re-
turns a list of candidate structures in which that candidate has one more vote
(and all the others are unchanged). You may assume that no name appears
more than once in the list.

Hint: What should you do if the name doesn’t appear in the list at all?

Exercise 25.2.5 Develop a function tally-votes which takes in a list of
strings (Voter 1’s favorite candidate, Voter 2’s favorite candidate, etc.) and
produces a list of candidate structures in which each candidate’s name appears
once, with how many votes were cast for that candidate.

338

25.3 Animations with lists

Exercise 25.3.1 Write an animation of a bunch of balls, each moving around
the screen with constant velocity and bouncing off walls. Pressing the + key
should create one more ball, with random initial location (inside the animation
window) and random velocity (say, from -10 to +10 in each dimension). Press-
ing the - key should remove the most recently-added ball, unless there are no
balls, in which case it should do nothing. Clicking with the mouse inside a ball
should remove the ball you clicked on, leaving the rest of the balls unchanged.

Hint: You’ll need each ball to have a location and a velocity, as in exer-
cise 23.7.5, and use a list of structs as your model, as in exercise 24.6.6.

Hint: What should happen if you click with the mouse in a place where two
or more balls overlap? The assignment doesn’t say exactly; you should decide
in advance what you want to happen in this case, and make it work.

25.4 A shorter notation for lists

Writing (cons "a" (cons "b" (cons "c" empty))) for a three-element list
is technically correct, but it’s tedious. Fortunately, Scheme provides a shorter
way to accomplish the same thing. There’s a built-in function named list that
takes zero or more parameters and constructs a list from them. For example,

>(list "a" "b" "c")

(cons "a" (cons "b" (cons "c" empty)))

Note that list is just a shorthand : it produces the exact same list as the cons

form, and any function that works on one of them will still work on the other.

Note also that you can’t just replace every cons in your code with list.
cons can be thought of as adding one element to the front of a list, whereas
list builds a list from scratch. For example,

>(define my-list (list "x" "y" "z"))

>(cons "w" my-list)

(cons "w" (cons "x" (cons "y" (cons "z" empty))))

>(list "w" my-list)

(cons "w" (cons (cons "x" (cons "y" (cons "z") empty) empty))

This makes it easier and more convenient to type in list, but it’s still sort of
a pain to read them. If you want lists to print out in list notation rather than
nested-cons notation, simply go to the “Language” menu in DrScheme, select
“Choose Language”, and then (under the How to Design Programs heading)
select “Beginning Student with List Abbreviations”.

339

>(list "a" "b" "c")

(list "a" "b" "c")

>(cons "a" (cons "b" (cons "c" empty)))

(list "a" "b" "c")

>(define my-list (list "x" "y" "z"))

>(cons "w" my-list)

(list "w" "x" "y" "z")

>(list "w" my-list)

(list "w" (list "x" "y" "z"))

25.5 More complex functions involving lists

Lists allow us to solve much more interesting and complicated problems than
we could solve before. Sometimes such problems require “helper” or “auxiliary”
functions. Here are a few interesting examples.

Exercise 25.5.1 Develop a function sort which takes in a list of numbers
and returns a list of the same numbers in increasing order.

Hint: Just follow the design recipe. When you reach the “inventory with val-
ues” point, you’ll find that the “right answer” needs to be constructed by insert-
ing one number into the right place in an already-sorted list. We don’t already
have a function to do that, so write one. I recommend distinguishing between
list-of-numbers and sorted-list-of-numbers: when a function produces a
sorted list, or assumes that it is given a sorted list, say so in the contract and
inventory, and make sure your test cases satisfy the assumption.

Exercise 25.5.2 Develop a function sort-candidates which takes in a list
of candidate structures and returns a list of the same candidate structures
in decreasing order by number of votes, so the winner is first in the list, the
second-place winner is second, etc.. In case of ties, either order is acceptable.

Exercise 25.5.3 Develop a function scramble which takes in a list (of num-
bers, strings, symbols, it doesn’t matter) and returns a list of lists representing all
possible orderings of the elements in the original list. For example, (scramble
(list "a" "b" "c") should produce something like

(list (list "a" "b" "c")

(list "b" "a" "c")

(list "a" "c" "b")

(list "c" "a" "b")

(list "b" "c" "a")

(list "c" "b" "a"))

2

Chapter 0

To the Instructor

although students are welcome to read it too!

This chapter explains the philosophy of how I teach programming, and why
the book is written the way it is. If you just want to get started programming,
by all means skip this chapter, and perhaps come back and read it later.

0.1 What is this book about? Why Scheme?

This book may be described as “a Scheme textbook”. That’s not quite an
accurate description: I’d prefer to call it “a programming textbook that happens
to use the Scheme language.” In other words, the Scheme language is not the
goal, but only a means towards the goal of knowing how to program.

Here’s why: Scheme, C++, Java, Python, or any other specific computer
language will become obsolete in a few years. If you plan to get a job as a
computer programmer next month, then by all means study the language(s)
used in industry right now. But if you plan to get a job programming several
years from now, you’ll have to learn a new language then anyway. The current
school term will be better spent learning more long-lasting skills, habits, and
principles: how to structure a program, what steps to take in developing a
program, how to manage your time so you finish the program on time, etc.
And if you don’t plan to be a professional programmer at all, then you don’t
need to learn this year’s “hot” language at all; you need to learn the important
principles of programming, in whatever language will “get out of the way” and
let you learn them.

Here’s my guiding rule in writing this book:

Introduce each language feature only when it helps to teach

an important programming principle.

In this book, there will be no “black magic”: nothing that you need to mem-
orize on faith that you’ll eventually understand it. On the first day, you will see
just enough language to do what you need on the first day. By the end of the

3

4

term, you will see just enough language to teach what you need in one term.
Any language feature that doesn’t help to teach an important programming
principle doesn’t belong in this book. Most programming languages, frankly,
don’t allow me to do that: in C++ or Java, for example, the very first program
you write requires knowing dozens of language features that won’t be fully ex-
plained for months. Scheme allows me to postpone irrelevant language features,
and concentrate on the important stuff.

But again, Scheme is only a means to an end. If students, six months after
taking this course, don’t remember any Scheme syntax at all but can follow the
design recipes (see below) in designing a correct program, the course has been
a success.

0.2 Structure of the book

Each chapter is designed to progress from the concrete to the abstract, start-
ing with either a specific problem to solve or a hands-on technique using the
DrScheme programming environment, moving on to more general techniques
and principles before wrapping up with a summary of what I think are the most
important concepts and terms from the chapter.

In particular, many of the chapters have a section or two towards the end
on formal language syntax. I put these sections in because I think they help:
asking students to justify that they’re writing legal code makes clear to them
that the computer is not a mysterious black box, but that it operates according
to rules that students too can learn and apply. The computer doesn’t substitute
for human thinking, but merely accelerates it. Ideally, once students internalize
some of these rules, they won’t fall prey to “my program doesn’t work; make a
random change to the code and see if it works now.” However, if you feel that
these sections don’t help your students, you can omit the syntax sections.

Regardless of whether you use the syntax sections, I recommend periodically
assigning students to show, step by step, the evaluation of expressions, in the
same way the DrScheme Stepper does. Again, the idea is to demonstrate that
everything DrScheme does, a human being can do and understand too, just a
billion times slower. This technique also becomes a useful debugging tool when
applied to complex programs, and it corresponds to the notion of execution
tracing in imperative/sequential programming (e.g. in Java, C++, or Ada).

TO DO: Insert some worked and unworked exercises of this form into the
book

For the most part, I recommend going through the chapters in the order
they appear in the textbook, although

TO DO: EXCEPTIONS?

.

5

0.3 Problems, programs, and program testing

A computer program that answered only one specific question, like

add 3 and 4

wouldn’t be very useful. Most computer programs are written to be general, in
that a single program can answer any one of many similar questions:

• add 3 and 4

• add 19 and -5

• add 102379 and -897250987

etc. Somebody writes the program to add two numbers once and for all; later
on, when you run the program, you provide specific values like 3 and 4, and the
program produces the right answer for those values. Run it again with different
values, and it should produce the right answer for the new values instead.

To take a more realistic example, a word processor program is written to
handle whatever words you choose to write. When you run the program, you
provide specific words — a grocery list, a letter to your grandmother, the Great
American Novel — and the program responds by doing things like formatting
them to fit on a page. Likewise, when you run a Web browser, you provide
a specific URL for a page you want to look at; the browser program uses the
network to retrieve specific words and pictures from that Web page, and then
arranges these words and pictures on the screen. If you’ve done a lot of Web
surfing, you’ve probably found an occasional page that showed up on the screen
as nonsense; this probably means the page had some weird information that the
browser wasn’t written to handle correctly.

Thus for a computer program to be considered “correct”, it has to produce
the right answer for all possible values it might be given to work on — even
the weird ones. One of the important steps in writing a computer program is
testing it to make sure it works correctly. However, since there are usually far
too many possible values to test them all, we have to choose test cases, being
careful to pick not only the easy cases but also the weird ones, so that if there’s
something our program doesn’t handle correctly, we find out as soon as possible
so we can fix it.

A program that hasn’t been tested convincingly is worthless: nobody will (or
should!) trust the answers it produces. Indeed, if you tell me you’ve tested the
program, but don’t provide me with what I need in order to test it myself, I may
not trust you or the program’s answers. In this book, I’ve tried to incorporate
a philosophy of testing from the beginning; a program turned in without a good
selection of test cases, together with what answers they are supposed to produce,
is incomplete and should be graded accordingly.

6

0.4 Data types

The notion that data types are important in programming is nothing new, dating
back at least to the 1960’s. But in this book (and its predecessor, How to Design
Programs), data types are used in very specific ways to help people program.

The shape of the data determines the shape of the code and

the tests.

For example, if a function deals with a data type that has three variants (“a
W is either an X, a Y, or a Z”), then the function body will almost certainly
involve a conditional with three cases, and the function’s test cases must cover
all three variants. Likewise, if a function deals with a data type that has three
parts (“a W consists of an X, a Y, and a Z”), the function code will probably
need to access those parts, and the test cases must set and/or test the values
of those parts. These two approaches — “definition by choices” and “definition
by parts” — can then be combined to produce powerful data structures such as
linked lists, binary and n-ary trees, as well as correct, tested code that works
on those data structures.

To take advantage of this principle, we shall always identify the input and
output data types of our functions before trying to write test cases or code. This
is one example of . . .

0.5 Design Recipes

This book places heavy emphasis on design recipes, step-by-step plans for get-
ting from (say) an English-language description of a computational problem to
a working, tested Scheme function. When I first encountered the recipe for
writing a function, in a workshop led by Matthias Felleisen, I thought it was
pretty dumb . . . but in the years since, as I’ve taught beginning programming
courses using it, I’ve been more and more convinced of its value — particularly
for beginning students, of course, but parts of it will benefit even professional
programmers. For example, the “write test cases” step comes before the stu-
dent has written any code to solve the problem; in the professional software
field, this is (the beginnings of) test-driven design, a crucial component of Agile
Programming.

For a design recipe to help your students, they have to use it. My sharpest
students have often wanted to skip the recipe, and they usually manage to write
working programs for a while by the seat of their pants, but about two thirds
of the way through a semester I start seeing these “sharp” students at my office
door with tangled messes of code. We throw away their code and start over,
following the design recipe, and they walk out with a working program half as
long as the buggy mess they brought in.

This teaches students a useful lesson, but it’s better if they learn it earlier
without spending half the semester on bad habits. To get students to use the
design recipes consistently, I have three suggestions to teachers:

7

• Do not help a student with step N of the recipe until the student shows you
satisfactory completion of step N−1. Be uncompromising and unwavering
on this point. (There are a few situations in which the order of steps can
be rearranged, e.g. sometimes it makes more sense to define data types
before writing function contracts, and sometimes after ; I’ll try to draw
attention to these exceptions as they come up.)

• Give students a grading rubric that explicitly gives partial credit for each
step of the recipe successfully completed. In my class, a student can earn
30 − 50% credit for a program without writing a line of code, simply by
correctly analyzing what it’s supposed to do and providing good test cases
for it.

• And of course, always follow the design recipe yourself in class. No short-
cuts; if you’re allowed to skip steps, the students will too.

0.6 Acknowledgments

This book is based, heavily and intentionally, on How to Design Programs, by
Felleisen, Flatt, Findler, and Krishnamurthi. The most important lessons of the
present book were all introduced in that one: “the shape of the data determines
the shape of the code and tests;” the design recipe for functions; the introduction
of recursion as motivated by the “shape” of self-referential data; the taxonomy
of recursion into structural, accumulative, and generative; and the broad order
of topics.

I’ve diverged from How to Design Programs in several ways, informed by my
experience teaching both a traditional college CS1 course and “programming
for non-majors”. First, the present book works extensively with graphics and
animation before ever introducing arithmetic, as many of my non-CS-major
students were intimidated by numbers and arithmetic; besides, graphics and
animation are more fun than numbers and arithmetic. Second, I’ve written the
prose at a slightly lower reading level, to make it accessible to a wider variety
of students at the high school and college levels. Third, I’ve made a number of
minor changes to terminology where I found that my students were consistently
misunderstanding the terminology in How to Design Programs.

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0618543. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

8

Chapter 1

Instructor’s guide for

chapter 5: A recipe for

defining functions

As I point out at the end of the chapter, this is the single most important
chapter in the book. If students internalize the steps of a design recipe like this,
they’ll be well on the way to being good programmers in any language, not only
Scheme.

That said, the design recipe as stated in this chapter is specifically for func-
tional programs — those that take in parameters and return values, but don’t
have side effects such as explicit input, output, or assignment. The design recipe
can be adapted to handle those things as well, but it’s more difficult: in par-
ticular, it’s much more difficult to write a good test suite for a program that
does I/O and assignment than for a function that returns a value determined
entirely by its arguments. This is one of the main reasons we use a functional
approach first, introducing I/O and assignment only later on.

To get across the lesson that every step of the design recipe matters, not only
the coding, I encourage you to give partial credit for each step (and tell students
this in advance!) For example, when grading individual functions, I often give
5 points for a correct contract, 5–10 for test cases, 5 for a correct function
skeleton, 5–10 for a correct function inventory, and 15–20 for a correct function
definition (as demonstrated by testing; I sometimes give another 5 points for
turning in test runs). This means a student can get 60% or more credit on a
problem without writing any working code (but with impeccable analysis and
design). If this bothers you, remember Fred Brooks’s rule of thumb that in a
realistic software project, 1/3 of the time is spent on analysis and design, 1/6
on coding, and 1/2 on testing and debugging[?]. In my experience, students are
more likely to overemphasize coding at the expense of analysis and design than
vice versa.

Similarly, to emphasize doing the steps in order, I encourage you (and any

9

10

tutors or teaching assistants you may have) to steadfastly refuse to help with a
later stage of a program until the student has shown you the completed earlier
stages. This doesn’t necessarily mean the student has done them correctly — if a
student shows you an incorrect contract, but doesn’t know yet that it’s incorrect,
you’ll have to use your judgment on whether to correct it immediately or go on
and let the student discover the error at a later stage — but they must be
completed to a basic, objectively-verifiable level before I’ll give any help with a
subsequent step.

Some students (particularly those who think they already know how to pro-
gram better than you do) will either skip the design recipe entirely, or go ahead
and write the program, then fill in the contract, examples, skeleton, and inven-
tory steps after the fact. These students will eventually find themselves tangled
up in an ill-understood and ill-specified program, will come to you for help, you’ll
throw out their program and start from scratch following the design recipe, and
they’ll finally be convinced that the recipe does help, at least in some cases;
the only unknown is how long they’ll be able to get by on native brilliance.
Typically, my sharpest students have hit this wall when assigned programs that
deal with lists of lists, e.g. power-set or permutations.

Chapter 2

Instructor’s guide for

chapter 22: Animations and

posns

Here’s a useful (and cheap!) classroom manipulable to help illustrate posns.
Take an ordinary letter-sized envelope, open along one of the long sides, and
run a line of staples down the middle, perpendicular to the long sides. You
have now subdivided the envelope into two compartments; label them “x” and
“y” respectively. Now write two numbers on two small slips of paper, put
one into the x compartment and the other into the y compartment. You’ve
simulated the action of make-posn. Hand this to a student and ask the student
for the x coordinate of the posn; the student will presumably reach into the x
compartment and pull out the slip of paper, thus demonstrating the action of
posn-x.

11

12

Chapter 3

Instructor’s guide for

chapter 23: Inventing new

structures

One of my first book-testers, high school teacher Alvin Kroon, got this far in
the book and then spent a few weeks teaching Microsoft Access before going on
to struct definitions in Scheme. This way students were already familiar with
the concept of a “record” having several “fields” before they had to do the same
thing in Scheme.

If you did the “envelope with a line of staples” trick in Chapter 2, you can
now take it a step farther by running two lines of staples across the envelope
and labelling the compartments “first”, “last”, and “age” (for the person struct)
etc..

13

14

Chapter 4

Instructor’s guide for

chapter 24: Lists and

functions on them

Section 24.3 presents a definition of a list data type “from first principles”, but
it’s sorta inconvenient to work with, and section 24.4 shows the way we actually
work with lists in practice. If your students are the sorts to be annoyed at
having to read through a theoretical construction of lists that isn’t the way
they’ll actually use them, feel free to skip section 24.3. If, on the other hand,
they’re the sorts who will better understand and appreciate the practical version
of lists after building them from first principles, don’t skip it.

Exercise 24.5.10 will challenge some students because they’re convinced that
the only possible answer to a question about the empty list is 0. The problem
can be solved that way, but it’s much easier if you decide that the answer to
the empty list is 1 (i.e. the identity element for multiplication, as 0 is the
identity for addition). Likewise, exercise 24.5.3 relies on the fact that false is
the identity for or, and exercise 24.5.11 on the fact that true is the identity
for and. If students don’t believe that (all-match empty) should be true, you
could try starting with a larger list, and observing that adding an element can
change the answer from true to false (if the new element doesn’t match) but
never from false to true; on the other hand, removing an element can change
the answer from false to true (if the removed element was the only one that
didn’t match) but never from true to false. Now try a one-element list whose
one element matches; the answer is obviously true. Remove this element; since
removing an element cannot change the answer from true to false, the answer
must still be true.

Exercise 24.5.15 can be done in a number of ways. Students who follow the
usual templates will probably decide that the right answer to (largest empty)

is 0, which works until you try a test case which is non-empty and consists
entirely of negative numbers, e.g. (largest (cons -3 (cons -14 (cons -5

15

16

empty)))). The Hint suggests, rather, that the function has no right answer
for an empty list, and therefore shouldn’t be called on an empty list. But the
usual template for functions on lists involves calling the function recursively on
the rest of the list, which might be empty. We’re really working with a different
datatype here: non-empty list, which is either a single element or more than one
element. It ALWAYS has a first and a rest, but if it’s more than one element, the
rest is itself a non-empty list. This data definition leads to a slightly different
template that works well for largest.

