
CSC 270
Nov. 22, 2005

Last Day of Scheme

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/270/

Review

• A "list" is either empty or not.
• If it's empty, it contains no information.
• If it's non-empty, it has a "first" element

(some data type) and a "rest" (another list).

Review: built-in functions on lists

• empty? : object -> boolean
• cons? : object -> boolean
• cons : object list -> non-empty-list
• first : non-empty-list -> object
• rest : non-empty-list -> list

Review: building lists

• empty
• (cons "a" empty)
• (cons "b" (cons "a" empty))
• (define mylist (cons "b" (cons "a" empty)))
• (cons "e" (cons "d" (cons "c" mylist)))

Review: examining lists

• (first (cons "a" empty)) "should be a"
• (rest (cons "a" empty)) "should be empty"
• (first (rest (rest (cons "a" (cons "b" (cons

"c" (cons "d" empty))))))) "should be c"

Review: writing functions on lists
; how-long : list -> number
(define (how-long L)

(cond [(empty? L) 0]
 [(cons? L) (+ 1 (how-long (rest L)))]))

"Examples of how-long:"
(how-long empty) "should be 0"
(how-long (cons 73 empty)) "should be 1"
(how-long (cons "a" (cons "b" empty)))

"should be 2"

Exercise: writing a function on lists

; add-up : list-of-numbers -> number
(define (add-up nums)

(cond [(empty? nums) 0]
 [(cons? nums)
 (+ (first nums) (add-up (rest nums)))]))

"Examples of add-up:"
(add-up empty) "should be 0"
(add-up (cons 4 empty)) "should be 4"
(add-up (cons 3 (cons 2 empty))) "should be 5"

Shorter notation
Note: change languages to Beginning Student with List

Abbreviations (or higher)
; list : as many objects as you wish -> list
(list "a" "b" "c") is short for (cons "a" (cons "b" (cons "c"

empty)))
(list) is equivalent to empty

The functions empty?, cons?, cons, first, rest, how-long,
and add-up work exactly as before; this is just a shorter
way of displaying a list

Warning:
(list "a" empty) is not the same thing as (cons "a" empty)!

Another function on lists
; remove>10 : list-of-nums -> list-of-nums
(define (remove>10 nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums) 10) (remove>10 (rest nums))]
 [else (cons (first nums) (remove>10 (rest nums)))])]))

"Examples of remove>10:"
(remove>10 empty) "should be" empty
(remove>10 (list 6)) "should be" (list 6)
(remove>10 (list 11)) "should be" empty
(remove>10 (list 6 11 10 -24 13 9)) "should be" (list 6 10 -24 9)
(remove>10 (list 11 10 -24 13 9)) "should be" (list 10 -24 9)

Generalizing the function
; remove>5 : list-of-nums -> list-of-nums
; remove>17: list-of-nums -> list-of-nums
What these have in common is that they remove all elements of the list greater

than a fixed threshold.
So we generalize the function:
; remove-over: num list-of-nums -> list-of-nums
(define (remove-over threshold nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(> (first nums)threshold) (remove-over threshold (rest nums))]
 [else (cons (first nums) (remove-over threshold (rest nums)))])]))
"Examples of remove-over:"
(remove-over 6 empty) "should be" empty
…
(remove-over 3.5 (list 4 9 17 2 6 3)) "should be" (list 2 3)

Generalizing the function farther
; remove<5 : list-of-nums -> list-of-nums
; remove>=4: list-of-nums -> list-of-nums
; remove-evens : list-of-nums -> list-of-nums

What all of these have in common is that they perform a test on each element of
the list, and remove the ones that pass the test.

Generalization:
; remove-if : test list-of-nums -> list-of-nums

Q: What is a "test"?
A: a property that every number either has or doesn't have
A: a function from number to boolean

Note: change languages to Intermediate Student

Writing remove-if
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 …

)
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

The routine stuff
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond […
 (remove-if test? (rest nums))]
 [else
 (cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

Using the test
; remove-if : (num -> boolean) list-of-nums -> list-of-nums
(define (remove-if test? nums)
 (cond [(empty? nums) empty]
 [(cons? nums)
 (cond [(test? (first nums))
 (remove-if test? (rest nums))]
 [else
 (cons (first nums) (remove-if test? (rest nums)))])]))
"Examples of remove-if:"
(remove-if even? (list 1 2 3 4 5)) "should be" (list 1 3 5)
(define (over-10? x) (> x 10))
(remove-if over-10? (list 3 12 10 5 16 -24 6)) "should be" (list 3 10 5 -24 6)
(define (under-5? x) (< x 5))
(remove-if under-5? (list 3 12 10 5 16 -24 6)) "should be" (list 12 10 5 16 6)

Writing functions using remove-if
; remove<5 : list-of-nums -> list-of-nums
(define (under-5? x) (< x 5))
(define (remove<5 nums) (remove-if under-5? nums))

; remove>=7: list-of-nums -> list-of-nums
You try this one.

; remove-evens : list-of-nums -> list-of-nums
(define (remove-evens nums) (remove-if even? nums))

Another example
; cube-each : list-of-nums -> list-of-nums
(define (cube-each nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (cube (first nums))
 (cube-each (rest nums)))]))

"Examples of cube-each:"
(cube-each empty) "should be" empty
(cube-each (list 2)) "should be" (list 8)
(cube-each (list 3 -2 0 5 -6)) "should be"

(list 27 -8 0 125 -216)

Similar functions
; sqrt-each : list-of-nums -> list-of-nums
; negate-each : list-of-nums -> list-of-nums
What these have in common is that they do the same thing to

each element of a list, returning a list of the results.
So we generalize the functions:
; do-to-each : operation list-of-nums -> list-of-nums

What's an "operation"? In this case, a function from number
to number.

; do-to-each : (num -> num) list-of-nums -> list-of-nums

Writing do-to-each
; do-to-each : (num -> num) list-of-nums -> list-of-nums
(define (do-to-each op nums)

(cond [(empty? nums) empty]
 [(cons? nums)
 (cons (op (first nums))
 (do-to-each op (rest nums)))]))

"Examples of do-to-each:"
(do-to-each cube (list 3 5 -2)) "should be" (list 27 125 -8)
(do-to-each sqrt (list 4 25 0)) "should be" (list 2 5 0)
(do-to-each - (list 3 -2 0 7.5)) "should be" (list -3 2 0 -7.5)

Writing functions using do-to-each

; sqrt-each : list-of-nums -> list-of-nums
(define (sqrt-each nums)

(do-to-each sqrt nums))

; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums)

(do-to-each add3 nums))

Dumb single-use functions
; add-3-to-each : list-of-nums -> list-of-nums
(define (add3 x) (+ x 3))
(define (add-3-to-each nums) (do-to-each add3 nums))

Better: hide add3 inside a local definition
(define (add-3-to-each nums)

(local [(define (add3 x) (+ x 3))]
 (do-to-each add3 nums)))

An example where we have to use local

; remove-over : num list-of-nums -> list-of-nums
(define (remove-over threshold nums)

(local [(define (over-threshold? num)
 (> num threshold))]
 (remove-if over-threshold? nums)))

Note: we couldn't have defined over-threshold? outside
remove-over, because it would have depended on the
threshold value.

Defining functions without names

(+ 3 (* 4 5))
doesn't require defining a variable to hold the value

of (* 4 5), and then adding 3 to it!
Why should add-3-to-each require defining a

function to add 3 to things, and then applying do-
to-each to it?

Note: change languages to Intermediate Student
with Lambda

Defining functions without names

New syntax rule:
(lambda (param param …) expr)
constructs a function without a name and

returns it.
Example:
(define (add-3-to-each nums)

(do-to-each (lambda (x) (+ x 3)) nums))

Defining functions without names

• Anything you can do with lambda can also
be done with local; may be more readable
because things have names

• Anything you can do with local can also be
done with lambda, often a little shorter

Programs that interact with user
• Our Scheme programs so far are called with input, and

they return an answer.
• Many real-world programs have to hold a continuing

dialogue with user:
– user says something
– program responds
– user responds to this
– program responds to that
– etc.

Programs that interact with user
• Other programs need to produce output piece by piece
• (list-primes)

– 2
– 3
– 5
– 7
– 11
– 13
– user break

Text input & output
(in Advanced Student language)

; display : object -> nothing, but prints the
object on the screen

(display 3)
(display (+ 3 4))
(display "hello there")
(display 'blue)
(display (make-posn 3 4))

Text input & output
; display-with-label : string obj -> nothing, but prints the string and the

object

"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Text input & output
; display-with-label : string obj -> nothing, but prints the

string and the object
(define (display-with-label label obj)

 (display label)
 (display obj)) <--- problem! 2 expressions!
"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Text input & output
; display-with-label : string obj -> nothing, but prints the

string and the object
(define (display-with-label label obj)
 (begin
 (display label)
 (display obj)))
"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Sequential programming

; begin : expr expr expr … -> object
; Evaluates each expression, ignoring the results, but

returns the result of the last one.
(begin
 (display (+ 3 4))
 (* 5 6))
"should display 7 and then return 30"
; Note: if last expression returns nothing (e.g.

display), so does begin.

Also want to get input from user

; read : nothing -> object
; waits for user to type an expression, and

returns it
Try some examples: numbers, strings,

booleans, identifiers

Oddities about "read"

; read : nothing -> object
; waits for user to type an expression, and returns it
; Note: variable names are treated as symbols, not

evaluated
; Function calls are treated as lists, with the function

being the first element
; 'x is treated as the function call (quote x)

Changing variable values
(define toys empty)
(cons "ball" toys) "should be" (list "ball")
toys "is still" empty
; add-toy : symbol -> nothing, but changes the value of toys
"Examples of add-toy:"
(add-toy "ball")
toys "should be" (list "ball")
(add-toy "nintendo")
toys "should be" (list "nintendo" "ball")

Changing variable values
; set! : variable expression -> nothing, but changes the

variable's value to be the expression
; Note: only works if the variable is already defined
; Convention: name ends in !, indicating that the function

changes at least one of its arguments
"Examples of set!:"
(define toys empty)
(set! toys (list "ball"))
toys "should be" (list "ball")
(set! toys (cons "nintendo" toys))
toys "should be" (list "nintendo" "ball")

Changing variable values

; add-toy : symbol -> nothing, but changes the value
of toys

(define (add-toy new-toy)
(set! toys (cons new-toy toys)))

"Examples of add-toy:"
(add-toy "ball")
toys "should be" (list "ball")
(add-toy "nintendo")
toys "should be" (list "nintendo" "ball")

Now you try it
(define age 18)
; birthday : nothing -> nothing, changes age

"Examples of birthday:"
(birthday)
age "should be" 19
(birthday)
age "should be" 20

My solution
(define age 18)
; birthday : nothing -> nothing, changes age
(define (birthday)

(set! age (+ 1 age)))
"Examples of birthday:"
(birthday)
age "should be" 19
(birthday)
age "should be" 20

Combining set! and begin
(define counter 0)
; count : nothing -> num
; returns 1 more each time you call it

"Examples of count:"
(count) "should be" 1
(count) "should be" 2
(count) "should be" 3

Combining set! and begin
(define counter 0)
; count : nothing -> num
; returns 1 more each time you call it
(define (count)
 (begin ; remember, returns the value of its last expression
 (set! counter (+ 1 counter))
 counter))
"Examples of count:"
(count) "should be" 1
(count) "should be" 2
(count) "should be" 3

A problem with set!

(define-struct person [name age shoe-size])
(define prof (make-person "Steve" 40 10.5))
(define me prof)
(set! me (make-person "Steve" 41 10.5))
prof "is still 40 years old!"
Problem: set! changes the variable, not the

object it refers to.

Modifying a structure

; set-person-age! : person num -> nothing, but
changes the age of the person

(define prof (make-person "Steve" 40 10.5))
(define me prof)
(set-person-age! me 41)
prof "is now 41 years old!"

Recall constructor, selector, and
discriminator functions

for a structure type
(define-struct person [name age shoe-size])
; make-person : string num num -> person
; person-name : person -> string
; person-age : person -> num
; person-shoe-size : person -> num
; person? : object -> boolean

There are also mutator functions
for a structure type

(define-struct person [name age shoe-size])
; make-person : string num num -> person
; person-name : person -> string
; person-age : person -> num
; person-shoe-size : person -> num
; person? : object -> boolean
; set-person-name! : person string -> nothing
; set-person-age! : person num -> nothing
; set-person-shoe-size! : person num -> nothing

Example
(define-struct employee [name num salary])
; give-raise! : emp num -> nothing, but changes the employee's salary by num%
(define (give-raise! emp percent)

…
)

"Examples of give-raise!:"
(define joe (make-employee "Joe" 7 54000))
(give-raise! joe 10)
joe "should be" (make-employee "Joe" 7 59400)

Example
(define-struct employee [name num salary])
; give-raise! : emp num -> nothing, but changes the employee's salary by num%
(define (give-raise! emp percent)

(set-employee-salary! emp
 (* (employee-salary emp)
 (+ 1 (/ percent 100)))))

"Examples of give-raise!:"
(define joe (make-employee "Joe" 7 54000))
(give-raise! joe 10)
joe "should be" (make-employee "Joe" 7 59400)

