
CSC 171
Introduction to

Computer Programming
Lecture 3

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/171/



Functions with
Multiple Arguments

• Write a function named “difference-of-
cubes” which takes two numbers
(larger and smaller, in that order) and
computes the difference of their cubes.

• Follow the design recipe.



Functions with
Multiple Arguments

; difference-of-cubes : number (big) number (small) ->
number

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”



Functions with
Multiple Arguments

; difference-of-cubes : number (big) number (small) ->
number

(define (difference-of-cubes big small)
… big … small …)

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”



Functions with
Multiple Arguments

; difference-of-cubes : number (big) number (small) ->
number

(define (difference-of-cubes big small)
(- (* big big big) (* small small small)))

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”



Functions with
Multiple Arguments

; difference-of-cubes : number (big) number (small) ->
number

(define (difference-of-cubes big small)
(- (cube big) (cube small)))

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”



Re-using old functions

• Writing, testing & debugging is a pain.
• Once you've written (tested &

debugged) a function, get as much
mileage from it as you can.

• Re-use it to help you write other
functions more simply and briefly.

• A good programmer is lazy!



Re-using old functions

• To re-use a previously-defined function,
it needs to be defined in the same
Definitions window, before the function
that uses it.

• I recommend doing a whole homework
assignment in one Definitions window,
so you can re-use easily.



Exercise

• Define a function “total-minutes” which
takes in a number of hours and a
number of minutes, in that order, and
returns the total number of minutes.

• Ex. (total-minutes 1 30) “should be 90”
• Follow the design recipe.



Recall: kinds of information

• Numbers
– Integers, e.g. 3, -29, 12870985701928745
– Fractions, e.g. 3/4, 23897/38904
– “floating-point” numbers, e.g. #i3.1415926

• Booleans: true and false
• Strings, e.g. “should be 7”, “Dr. Bloch”
• Pictures



Contracts for
predefined functions

• + takes two or more numbers & returns a number

• / takes two numbers & returns a number

• sqrt takes one number & returns a number

• cos takes one number & returns a number

• etc. etc.

Can’t use any function correctly without knowing its contract!



Contracts for more
predefined functions

• = takes two numbers and returns a Boolean

• >, <, >=, <= each takes two numbers and returns a
Boolean

• even? takes in a number and returns a Boolean
(Convention: names ending in “?” mean the function
returns a Boolean)

• not takes in a Boolean and returns a Boolean

• and, or each takes in two or more Booleans and
returns a Boolean



Shorter notation for contracts
• + : number number … -> number

• / : number (numerator) number (denominator) -> number

• sqrt : number -> number

• cos : number -> number

• difference-of-cubes : number (big) number (small) -> number

• = : number number -> boolean

• and : boolean boolean ... -> boolean

• Note: when there are several parameters, and it makes a
difference which one is which, it helps to give them names in
the contract.



Example

; The “under-100?” function tells whether a number is less than
100.

; under-100? : number -> boolean



Subranges of numbers

• Input is numbers, but divided into two
subranges:
– Anything under 100, and
– Anything 100 or more



Choosing examples

• If output is a Boolean, make sure there's
at least
– One example with right answer true
– One example with right answer false

• If input is ranges of numbers, make sure
there's at least
– One example in each subrange
– One example at each boundary



Example

; The “under-100?” function tells whether a number is less than
100.

; under-100? : number -> boolean

“Examples of under-100?:”

(under-100? 73) “should be true”

(under-100? 100) “should be false”

(under-100? 101) “should be false”



Example

; The “under-100?” function tells whether a number is less than
100.

; under-100? : number -> boolean

(define (under-100? num)
... num ... )

“Examples of under-100?:”

(under-100? 73) “should be true”

(under-100? 100) “should be false”

(under-100? 101) “should be false”



Example

; The “under-100?” function tells whether a number is less than
100.

; under-100? : number -> boolean

(define (under-100? num)
(< num 100))

“Examples of under-100?:”

(under-100? 73) “should be true”

(under-100? 100) “should be false”

(under-100? 101) “should be false”



Homework problem

• The function “can-vote?” takes in a person’s
age (a number of years) and returns a true or
false indicating whether that person is at
least 18.

• Follow the design recipe.



Homework problem

• The function “can-vote-but-not-drink?” takes
in a person’s age (a number of years) and
returns a true or false indicating whether that
person is at least 18 but under 21.

• Follow the design recipe.


