
CSC 171
Introduction to

Computer Programming
Lecture 2

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/171/

Review: Recipe for
defining functions

1) Contract
specify function name
num/types of args,
type returned

2) Examples
write down examples with known right answers

3) Function skeleton

4) Function body

5) Testing

Review:
Why do we need a recipe?

Programming requires creativity, and sometimes that’s
enough.

But when programs get big and complex, it helps to
have a structure to follow.

Analogous to rules of counterpoint, harmony, etc. in
music. Sonata, rondo, virelai, fugue, …

Helps avoid “blank page syndrome”.

Syntax Rules So Far
1) How to call a function

(function-name expression expression …)
Ex: (+ 1 2 3 4 5)

2) How to define a variable
(define variable-name expression)
Ex: (define bigger (* big big big))

3) How to define a function
(define (func-name param-name …)
 expression)
Ex: (define (cube num) (* num num num))

(There will be c. 6 syntax rules for the whole semester. So
you’re halfway done!)

Another example: temperature conversion

; f->c takes a number of degrees Fahrenheit and
returns the corresponding number of degrees
Celsius.

Another example: temperature conversion
; f->c takes a number of degrees Fahrenheit and returns the

corresponding number of degrees Celsius.

“Examples of f->c:”

(f->c 32) “should be” 0)

(f->c 212) “should be” 100

(f->c -40) “should be” -40

Another example: temperature conversion

; f->c takes a number of degrees Fahrenheit and returns the
corresponding number of degrees Celsius.

(define (f->c Fahrenheit)

 … Fahrenheit …)

“Examples of f->c:”

(f->c 32) “should be” 0)

(f->c 212) “should be” 100

(f->c -40) “should be” -40

Another example: temperature conversion

; f->c takes a number of degrees Fahrenheit and returns the corresponding
number of degrees Celsius.

(define (f->c Fahrenheit)

 (* 5/9 (- Fahrenheit 32)))

“Examples of f->c:”

(f->c 32) “should be” 0)

(f->c 212) “should be” 100

(f->c -40) “should be” -40

When you're Writing a Function…

• Function names cannot contain spaces.
• You must spell the function name exactly the same

way in contract, examples, and definition.
• You must spell the parameter name exactly the

same way in header and body.
• You cannot assume that the input will be any specific

number (like 2, or 7, or …)
• Refer to the input only by the parameter name (e.g.

days), so it works on whatever input is actually
provided (stuck into the envelope).

Different kinds of information

• Numbers
– Integers, e.g. 3, -29, 12870985701928745
– Fractions, e.g. 3/4, 23897/38904
– “floating-point” numbers, e.g. #i3.1415926

• Booleans: true and false
• Strings, e.g. “should be 7”, “Dr. Bloch”
• Pictures (we’ll play with this on Monday)

Objects, Types, and Functions
English

• Verb (action)
– go, eat, buy, give

• Proper noun (specific thing)
– Adelphi, Rover, Dr. Bloch

• Pronoun (holder for thing)
– him, her, it

• Improper noun (kind of thing)
– school, dog, professor

Programming language
• Function

– +, sqrt, cube, hrs->mins
• Literal

– 3, "hello", true
• Variable

– big, num, age, …
• Data type

– number, boolean, string, …

In-class exercise

• The function “days->hours” takes in a
number of days and returns how many hours
are in it. Write contract, examples, and
skeleton.

• The function “difference-of-cubes” takes in
two numbers and returns the difference
between their cubes. Write contract,
examples, and skeleton.

In-class exercise

• The function “over-18?” takes in a person’s
age (a number of years) and returns a true or
false indicating whether that person is over
18. Write contract, examples, and skeleton.

• The function “salutation” takes in an hour of
the day (1-24) and returns either “Good
morning”, “Good afternoon”, or “Good
evening” as appropriate. Write contract,
examples, and skeleton.

