
CSC 171
Introduction to

Computer Programming

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/171/

What's this course about?

• Fundamentals of computer programming
• Going from a word problem to a working

program
• Designing programs to be modified and

reused
• How computer scientists think

What's this course not about?

• A particular programming language
– (e.g. C++, Java, Scheme, perl, ...)

• A particular programming environment
– (e.g. VisualStudio, DrScheme, ...)

• Designing Web pages
• Arithmetic

However, we have to use...

• A programming language
– (we'll use Scheme, and later Java)

• A programming environment
– (we'll use DrScheme, and later ProfessorJ)

• The Web
– (for textbook, assignments, announcements, ...)

• Arithmetic
– (as an example you've all seen)

Who should take this course?

• CS and CMIS majors
• Math majors for programming credit

(can take 160 instead)
• Other majors curious about computer

programming
(can take 160 instead)

Who should not take this course?

• End-users and Web page authors
• Students looking for a “cake” course

3 hours/week lecture
3 hours/week lab
6 hours/week homework & reading

Imagine this assignment...

• 20-page paper
• Due at end of semester
• On Napoleon's invasion of Russia

What kinds of knowledge are
needed?

• Napoleon & Russia
• How to write a 20-page paper
• How to finish a long-term project on time

Imagine this assignment...

• 20-page paper
• Due at end of semester
• On Napoleon's invasion of Russia
• In Swedish
• With a quill pen

What kinds of knowledge are
needed?

• Napoleon & Russia
• How to write a 20-page paper
• How to finish a long-term project on time
• Swedish language (spelling, vocabulary,

grammar, idioms…)
• How to use a quill pen

In a programming course...

• Content-area knowledge
• (graphics, economics, physics, etc.)

• How to structure a program
• How to finish a long-term project on time
• Scheme (or C++ or Java or whatever)

language
• How to use the software & hardware

What's really going on inside
ordinary arithmetic?

What's really going on inside
ordinary arithmetic?

What's really going on inside
ordinary arithmetic?

3 + (4 * 5)

What's really going on inside
ordinary arithmetic?

Ambiguity

We usually resolve the ambiguity with
precedence rules:

PEMDAS

More arithmetic

Definitions in arithmetic

Function definitions in arithmetic

• Let f(x) = cos(x) + 5
– (has no value, but a side effect instead)

A lot of this is confusing
1) Some operators go between two operands; others

go before one operand; some require parentheses
around operand, some don’t.

2) Need precedence rules (PEMDAS) to resolve
ambiguity

3) Sometimes = means “are these equal?”;
sometimes it means “define this to stand for that”.

4) Sometimes there's no visible operator; defaults to
multiplication

5) (3+4) means the same as 3+4, or even ((3+4))

Some simpler, more consistent rules:
1) All operators go before however many operands

they need.

2) All subexpressions must have parentheses around
them (including the operator).

3) = means “are these equal?”;
define means “make this stand for that”.
Both count as operators (see rules 1 & 2)

4) No hidden operators; if you mean *, say it.

5) No extra parentheses allowed; exactly one pair of
parentheses per operator.

Old vs. new notation
• 3 + 4
• 3 + 4 * 5
• (3+4) * 5
• 2 + cos(0)
• 3 + 4 = 7
• 3 + 4 > 7
• Let x = 7
• 6x + ((2))
• Let f(x) = cos(x) + 2
• f(0)

• (+ 3 4)
• (+ 3 (* 4 5))
• (* (+ 3 4) 5)
• (+ 2 (cos 0))
• (= (+ 3 4) 7)
• (> (+ 3 4) 7)
• (define x 7)
• (+ (* 6 x) 2)
• (define (f x) (+ (cos x) 2))
• (f 0)

