CSC 171
Introduction to

Computer Programming
Lab 1

Dr. Stephen Bloch
sbloch@adelphi.edu
http://www.adelphi.edu/sbloch/class/171/

Review: simpler, more consistent
rules for arithmetic

1) All operators go before however many operands they need.

2) All subexpressions must have parentheses around them
(including the operator).

3) = means “are these equal?”’;
define means “make this stand for that”.
Both count as operators (see rules 1 & 2)

4) No hidden operators; 1f you mean *, say it.

5) No extra parentheses allowed; exactly one pair of
parentheses per operator.

Review: Old vs. new notation

3+4 e (+34)

3+4 %5 e (+3(*4)))

(3+4) * 5 e (*(+34)))

2 + cos(0) e (+2(cos0))

3+4=7 e (=(+34)7)

3+4>7 e >H+34)7)

Letx="7 e (define x 7)

6x + ((2)) * (+(*6x)2)

Let f(x) = cos(x) + 2 e (define (f x) (+ (cos x) 2))

£(0) « (0

Conversion recipe

1) Expand abbreviations * 3zbecomes 3 *z
e 7?becomes z * z

2) Parenthesize all subexpressions * 3*3+4%*5 becomes ((3*3)+(4*5))
that have an operator. Should (—b+\/ (b? - 4ac))/2a becomes
end up w/same number of (((-b)+sqrt((b*b)-(4*a*c)))/(2*a))
operators, left-parentheses, and
right-parentheses.

3) Move each operator to just after
its own left parenthesis.

(‘3_‘{-') becomes (+ 3 x)
(‘3@(‘{{@5)) bCCOI’nCS[- 3 (* 4 5))
WP PR P P $2))) becomes (- (+ 7 x) (/ (+ 3 %) (+ y :

(N

Using DrScheme: interactions

l

Welcome to DrScheme, version 301.
Language: Beginning Student.

> (+ 3 (* 4 5))

23

>

Using DrScheme: Definitions

(+ 4)

(+ (* 4 5))

(* (+ 3 4) 5)

(+ 2 (cos 0))

(= (+ 3 4) 7)

(> (+ 3 4) 7)

(define % 7)

(+ (* & %) 2)

(define (£ %) (+ (cos %)
(€ 0)

C
-]
?
.

-~
-

Welcome to DrScheme, version 301.
Language: Beginning Student.
7

23

35

3

true

false

44

3

>

Using DrScheme: Stepper

(+ 3 (* 4 5)) o . =+ 3 20)

Common errors

 Mismatched parentheses

* Omitting space after operator or between
numbers

e Putting operator between operands

Checking your work

(+ 3 4) "should be 7"
3

~arr

—
(o]

""should be 8"

(+ 3 (* 4 5)) "should be 2

(* (+ 3 4) 5) "should be 35"

(= (+ 3 4) 7) "should be trues"

(> (+ 3 4) 7) "should be false"
|

(* 3 5

Welcome to DrScheme, version 301.
Language: Beginning Student.
7

"should be 7"

23

"should be 23"

35

"should be 35"

true

"should be trues"

false

"should be false"”

15

"should be 8"

>

Exercise

Make up some arithmetic expressions.
On paper, write down their correct values.
Convert them to Scheme syntax.

Type them, with their correct values, into
the Definitions window.

Hit “Run”; did they all work correctly?

Exercise: find the cubes of...

a) 0
b) 5
c) 17
d) 1234567890

e) The result of (d)

One way

(*000) “should be 0~
(*55)5) “should be 125”
(* 17 17 17) “should be a few thousand”

(* 1234567890 1234567890 1234567890) “should be about thirty digits

long”

(* yecch....)

“should be about ninety digits long”

Better: define variables

(define big 1234567890)

(** big big big) “s

(define bigger (*

D1g

nould be about 30 digits™

big big))

(** bigger bigger bigger)
“should be about 90 digits™

Even better: define function

(define (cube num) (* num num num))

(cube 1234567890)
“should be about 30 digits™

(cube (cube 1234567890))
“should be about 90 digits™

But are we sure cube 1s right?

“cube” function takes in a number and returns another
number

Must produce right answer for every possible input

Problem: infinitely many possible inputs; can't test them
all!

Choose test cases carefully:
— Cover all “special cases”
— Do the easy ones first, building up to harder ones

— Number of test cases increases with complexity of
program

Writing “cube” methodically

: cube : takes 1n a number and returns a number

(cube 0) “should be” O
(cube 5) “should be” 125
(cube -6) “should be” -216

Writing “cube” methodically

: cube : takes 1n a number and returns a number
(define (cube num)

... something involving num ...)

(cube 0) “should be” O
(cube 5) “should be” 125
(cube -6) “should be” -216

Writing “cube” methodically

: cube : takes 1n a number and returns a number
(define (cube num)

(* num num num))

(cube 0) “should be” O
(cube 5) “should be” 125
(cube -6) “should be” -216

1)

2)

3)

4)

S)

Recipe for defining functions

Contract
specify function name, number/types of arguments,
type returned

Examples
write down examples with known right answers

Function skeleton
inserted between contract and examples

Function body
replaces function skeleton

Testing
Do the examples produce the expected answers?

Why do we need a recipe?

Programming requires creativity, and sometimes that’s
enough.

But when programs get big and complex, it helps to have a
structure to follow.

Analogous to rules of counterpoint, harmony, etc. in music.
Sonata, rondo, virelai, fugue, ...

Helps avoid “blank page syndrome”.

Exercise

e Define a function “hours->minutes’” which
takes 1n a number of hours & returns how
many minutes it 1s.

e Follow the design recipe.

Functions with
Multiple Arguments

Write a function named “difference-of-
cubes’” which takes two numbers and
computes the difference of their cubes.

Follow the design recipe.

Functions with
Multiple Arguments

. difference-of-cubes : number number -> number

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

. difference-of-cubes : number number ->
number

(define (difference-of-cubes X y)
... something involving x and y ...)

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”

(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

. difference-of-cubes : number number ->
number

(define (difference-of-cubes X y)

CCxxx)(Fyyy))
“Examples of difference-of-cubes:”

(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”

(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

. difference-of-cubes : number number ->
number

(define (difference-of-cubes X y)
(- (cube x) (cube y)))

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”

(difference-of-cubes 3 2) “should be 19”

Exercise

e Define a function “total-minutes” which
takes 1n a number of hours and a number of
minutes and returns the total number of
minutes.

e EX. (total-minutes 1 30) “should be 90

e Follow the design recipe.

Pre-semester survey

www.adelphi.edu/sbloch/class/171/survey.html

Daily survey

www.adelphi.edu/sbloch/class/171/daily.html

