
CSC 171
Introduction to

Computer Programming
Lab 1

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/171/

Review: simpler, more consistent
rules for arithmetic

1) All operators go before however many operands they need.

2) All subexpressions must have parentheses around them
(including the operator).

3) = means “are these equal?”;
define means “make this stand for that”.
Both count as operators (see rules 1 & 2)

4) No hidden operators; if you mean *, say it.

5) No extra parentheses allowed; exactly one pair of
parentheses per operator.

Review: Old vs. new notation
• 3 + 4
• 3 + 4 * 5
• (3+4) * 5
• 2 + cos(0)
• 3 + 4 = 7
• 3 + 4 > 7
• Let x = 7
• 6x + ((2))
• Let f(x) = cos(x) + 2
• f(0)

• (+ 3 4)
• (+ 3 (* 4 5))
• (* (+ 3 4) 5)
• (+ 2 (cos 0))
• (= (+ 3 4) 7)
• (> (+ 3 4) 7)
• (define x 7)
• (+ (* 6 x) 2)
• (define (f x) (+ (cos x) 2))
• (f 0)

Conversion recipe
1) Expand abbreviations

2) Parenthesize all subexpressions
that have an operator. Should
end up w/same number of
operators, left-parentheses, and
right-parentheses.

3) Move each operator to just after
its own left parenthesis.

• 3z becomes 3 * z
• z2 becomes z * z
• 3*3+4*5 becomes ((3*3)+(4*5))
• (-b+√ (b2 - 4ac))/2a becomes

(((-b)+sqrt((b*b)-(4*a*c)))/(2*a))

Using DrScheme: interactions

Using DrScheme: Definitions

Using DrScheme: Stepper

Common errors

• Mismatched parentheses
• Omitting space after operator or between

numbers
• Putting operator between operands

Checking your work

Exercise

• Make up some arithmetic expressions.
• On paper, write down their correct values.
• Convert them to Scheme syntax.
• Type them, with their correct values, into

the Definitions window.
• Hit “Run”; did they all work correctly?

Exercise: find the cubes of…

a) 0

b) 5

c) 17

d) 1234567890

e) The result of (d)

One way

a) (* 0 0 0) “should be 0”

b) (* 5 5 5) “should be 125”

c) (* 17 17 17) “should be a few thousand”

d) (* 1234567890 1234567890 1234567890) “should be about thirty digits

long”

e) (* yecch….)

“should be about ninety digits long”

Better: define variables

(define big 1234567890)

(* big big big) “should be about 30 digits”

(define bigger (* big big big))

(* bigger bigger bigger)
“should be about 90 digits”

Even better: define function

(define (cube num) (* num num num))

(cube 1234567890)
“should be about 30 digits”

(cube (cube 1234567890))
“should be about 90 digits”

…

But are we sure cube is right?
• “cube” function takes in a number and returns another

number
• Must produce right answer for every possible input
• Problem: infinitely many possible inputs; can't test them

all!
• Choose test cases carefully:

– Cover all “special cases”
– Do the easy ones first, building up to harder ones
– Number of test cases increases with complexity of

program

Writing “cube” methodically

; cube : takes in a number and returns a number

(cube 0) “should be” 0

(cube 5) “should be” 125

(cube -6) “should be” -216

Writing “cube” methodically
; cube : takes in a number and returns a number
(define (cube num)
 … something involving num …)

(cube 0) “should be” 0
(cube 5) “should be” 125
(cube -6) “should be” -216

Writing “cube” methodically
; cube : takes in a number and returns a number
(define (cube num)
 (* num num num))

(cube 0) “should be” 0
(cube 5) “should be” 125
(cube -6) “should be” -216

Recipe for defining functions
1) Contract

specify function name, number/types of arguments,
type returned

2) Examples
write down examples with known right answers

3) Function skeleton
inserted between contract and examples

4) Function body
replaces function skeleton

5) Testing
Do the examples produce the expected answers?

Why do we need a recipe?

Programming requires creativity, and sometimes that’s
enough.

But when programs get big and complex, it helps to have a
structure to follow.

Analogous to rules of counterpoint, harmony, etc. in music.
Sonata, rondo, virelai, fugue, …

Helps avoid “blank page syndrome”.

Exercise

• Define a function “hours->minutes” which
takes in a number of hours & returns how
many minutes it is.

• Follow the design recipe.

Functions with
Multiple Arguments

• Write a function named “difference-of-
cubes” which takes two numbers and
computes the difference of their cubes.

• Follow the design recipe.

Functions with
Multiple Arguments

; difference-of-cubes : number number -> number

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

; difference-of-cubes : number number ->
number

(define (difference-of-cubes x y)
… something involving x and y …)

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

; difference-of-cubes : number number ->
number

(define (difference-of-cubes x y)
(- (* x x x) (* y y y)))

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”

Functions with
Multiple Arguments

; difference-of-cubes : number number ->
number

(define (difference-of-cubes x y)
(- (cube x) (cube y)))

“Examples of difference-of-cubes:”
(difference-of-cubes 0 0) “should be 0”
(difference-of-cubes 2 0) “should be 8”
(difference-of-cubes 3 2) “should be 19”

Exercise

• Define a function “total-minutes” which
takes in a number of hours and a number of
minutes and returns the total number of
minutes.

• Ex. (total-minutes 1 30) “should be 90”
• Follow the design recipe.

Pre-semester survey

www.adelphi.edu/sbloch/class/171/survey.html

Daily survey

www.adelphi.edu/sbloch/class/171/daily.html

