
Computer Science 171
Introduction to Computer Programming

Dr. Stephen Bloch
office 203 Post Hall

phone 877-4483
email sbloch@adelphi.edu

Web page http://www.adelphi.edu/sbloch/

Class Web page http://www.adelphi.edu/sbloch/class/171/

office hours MWF 12:00-1:00, T 10:00-3:00

January 23, 2013

1 Subject Matter — Overview

Computers do many of the same things people do, only faster, more accurately,
and without getting bored. Accordingly, the task of programming a computer is
essentially the task of figuring out exactly how you would solve a particular problem,
and then explaining it to the computer. Unfortunately, computers are literal-minded
and completely devoid of intuition, so your explanation must be much more precise
and unambiguous than if you were explaining things to a human being. This course,
therefore, is about how to figure out precisely and unambiguously what problem
you’re trying to solve, figure out precisely and unambiguously how to solve it, and
explain all this to a computer.

In a broader sense, this course is about problem-solving, and about a particular
way of approaching the world which we may call algorithmic thinking. I consider
computer science a “liberal art” providing training in how to think, regardless of
whether you choose it as a profession.

2 Who Should Take This Course

If you’re a CS or CMIS major, you should take this course as early as possible,
preferably in your first or second semester at Adelphi. If you’re a CS minor or

1



a math or Physics major, you should take this course in your first two years at
Adelphi. If you’re planning on any other major but are curious about how computer
programs and programmers work, you are welcome to take this course, but you
might be better served by CSC 160; again, consult with the professor. If you have
no interest in writing programs of your own, but simply want to use Web browsers
and search engines, spreadsheets, databases, word processors, etc. and perhaps write
your own Web pages, you should take CSC 170 instead.

This course does not assume that you’ve ever written a computer program before,
but even if you have, you’ll probably learn new ideas here. It’s a 4-credit course,
meeting for 3 hours of lecture and 3 hours of lab every week; you should budget
an additional 6 hours per week outside class for homework and reading. I’m not
kidding.

3 Goals of the Course

By the end of this course, you should

• be comfortable using a program development environment (like BlueJ) to carry
out a design-code-test-debug cycle

• Know the Java syntax for defining and using common programming compo-
nents such as variables, methods, classes, conditionals, recursion, and looping

• Be able to parse algebraic expressions in Java and ordinary algebra by hand,
recognize which operator governs which sub-expressions, and infer types and
values of expressions

• Be able to trace the execution of a program by hand, in particular the values
of variables at different times and in different method invocations

• Internalize habits of clear coding: good choices of names for variables, methods,
and classes; indentation and blank space; commenting; named constants; code
re-use and factoring

• Design and implement simple graphical user interfaces, including coordinate-
based drawing and some event-handling

• Be able to read a problem specification, abstract away inessential details, and
identify important types, relationships, and operations

• Be able to plan the development of a complex program as a sequence of testable
versions

2



• Design methods and classes to be easily re-used without modification, and
enhanced without breaking what already works

• Follow step-by-step recipes for designing methods and classes

• Choose and use appropriate test cases at every level of a program; test-driven
development, bottom-up testing and debugging

Naturally, you will continue learning many of these skills throughout your computer
science career, but you should make a good start on all of them this semester.

4 Subject Matter — More Details

4.1 “Good” Programs

What distinguises a “good program” from a “bad program”? Obviously, a good
program has to work correctly and reliably — a difficult goal in itself, as we’ll see.
But this is far from enough. In practice, very few programs are written once, used
for a while, and discarded: much more often, a program is used until the need for
it changes, the program is modified (often by a different programmer) to handle the
new requirements, the modified program is used for a while, and the cycle repeats.
Thus a “good program” must be not only correct the first time around, but struc-
tured in such a way that it can easily be modified to accomodate likely changes in
requirements. To get across the point of modifiability, I may occasionally change
the assignment slightly on the day that it’s due. So whenever you get an as-
signment, you should immediately start thinking “how is Dr. Bloch likely to change
this at the last minute?” and prepare for such a change. If implementing the change
takes you an hour or more, you didn’t design the program well for modifiability.

There are other criteria for a “good” program, in addition to correctness and
modifiability: fault-tolerance, efficiency, user-friendliness, etc. You’ll learn more
about these in subsequent computer science courses.

4.2 Kinds of Knowledge

A first programming course is in some sense an almost impossible task. In one
semester, you’ll be asked to learn several different kinds of knowledge:

1. How to use the computers and the software on them

2. The grammar, punctuation, and vocabulary of a programming language

3. How to analyze a problem and design a program to solve it, so that the program
is both correct and easy to write, read, modify, and repair

3



4. How to plan your time, and what sequence of steps to go through, in designing,
writing, testing and debugging a program

5. Domain-specific knowledge (e.g. to write a program that draws geometric
shapes on the screen, you have to know something about geometry.)

It is easy for a student (or a professor or a textbook author, for that matter) to get
caught up in the details of the first two at the expense of the rest. I urge you not
to fall into this trap, because the specific kinds of computers and software, and to
some extent the language, you learn this semester will almost certainly be obsolete
by the time you leave Adelphi. The much more interesting and lasting knowledge is
at levels 3, 4, and 5 (and I’ll try to minimize the time we spend on level 5 because
it’s not specific to computer science). In short, although all five kinds of knowledge
are necessary in order to write a good program, I’ll try to concentrate on levels 3
and 4.

4.3 Language and design recipes

Programming a computer requires that, to some extent, you learn the computer’s
language. Computers “understand” a lot of different languages, and the choice of
language affects how you approach programming.

For this semester and next, we’ll be using the popular Java programming lan-
guage, and the BlueJ development environment, which was designed for first-year
programmers and which you can download for free at http://www.bluej.org.

Throughout the semester, we’ll pay a lot of attention to design patterns, which
are step-by-step “recipes” for getting from a vague English-language description of
a problem to a working computer program. Every year, some students skip the
recipes when they’re in a hurry, and invariably find themselves wasting more time
as a result. To prevent this, you will be graded on, among other things, how well
and thoroughly you use the recipes.

4.4 Knowing your Tools

If you wanted to learn carpentry, you would start by studying the characteristics and
capabilities of each of the common tools carpenters use, so you use the right tool
at the right time for things that it does well. In programming, although you have
editors, compilers, etc. to help, your main tool is your mind; accordingly, it makes
sense to study the characteristics and capabilities of your mind. Indeed, it can be
studied and measured just as scientifically as a bouncing ball in Physics class. By
the end of the semester, you should have a much better idea (backed up with hard
numbers) of how you work as a programmer, and hence the ability to accurately
estimate how long you will need to complete a specified programming task. This

4



allows you to plan ahead and complete assignments on time — an invaluable skill for
a professional programmer, and applicable to the (non-programming) rest of your
life as well!

5 Texts

We’re teaching this course a little differently this semester, and haven’t found a
textbook that exactly matches what we want to do. Dr. Bloch’s book Picturing
Programs covers a lot of the same topics, but in the Racket language rather than
Java. There are lots of books out there about the Java language; some of my favorites
(in alphabetical order) are

• “Learning the Java Language” (free tutorial from the makers of Java, on the
Web at http://docs.oracle.com/javase/tutorial/java/TOC.html)

• Barnes and Kölling, Objects First with Java: a Practical Introduction Using
BlueJ, see
http://www.amazon.com/Objects-First-Java-Practical-Introduction/dp/0132492660

• Gee, Java – Objects First: an Introduction to Computer Programming using
Java and BlueJ, free on the Web at
http://www.people.okanagan.bc.ca/rgee/javabook.pdf

• Horstmann, Big Java, see
http://www.amazon.com/Big-Java-Compatible-Edition-ebook/dp/B005HGFFL6

• Sierra and Bates, Head First Java, available from O’Reilly at
http://shop.oreilly.com/product/9780596009205.do

This is a 4-credit course: 3 hours/week of lecture and 3 hours/week of lab. The
usual rule of thumb for out-of-class work is twice the lecture time, so you should plan
on spending an additional 6 hours/week on reading and homework. In particular,
you’ll need to read, on average, around 40 pages a week, and the programming
homework will take a significant amount of time. You are responsible for everything
in the reading assignments, whether or not I discuss it in a lecture. You
are also responsible for checking the class Web page and Moodle page at least once
a week or so; I often post assignments, corrections to assignments, solutions to
assignments, etc. there.

6 Grading

Your grade will be computed from several sources, broken down approximately as
follows:

5



• (40%) There will be 5–8 major programming assignments, to be turned in by
e-mail, graded in detail and returned to you by e-mail. Within a week after I’ve
returned the graded assignment, you may turn in a “second chance” version.
Your original grade will be averaged together with 80% of the “second chance”
grade, so if you’ve only made a small improvement, or if you got at least an
80% the first time around, you can only hurt yourself by re-submitting so don’t
bother. Note also that the last assignment will be too close to the end of the
semester to allow for a “second chance”.

A major programming assignment turned in with a time stamp after midnight
on the due date is late, and will receive partial credit depending on how late
it is. Anything turned in after midnight on May 8, the last day of class, will
be ignored.

• (20%) There will be 27 lab sessions, with (probably) a lab programming as-
signments for each one. These will be much shorter than the major program-
ming assignments. You’ll either show these to Dr. Stemkoski in lab, or turn
them in to us before midnight on the same day. They will be graded as either
“satisfactory” or “unsatisfactory”; don’t bother turning them in late.

• (15%) There will be 5–10 brief (15–20-minute) quizzes, to be done on paper;
we’ll grade them and try to get them back to you at the next class meeting.
They cannot be made up; if you’re not there the day of a quiz, you have a zero
on it.

• (20%) There will be a two-hour final exam from 10:30-12:30 on May 18.

• (5%) We’ll assign “brownie points” based on such considerations as classroom
behavior, asking or answering good questions, helping your classmates without
stepping over the line into cheating (see below), etc.

The final exam must be taken at the scheduled time, unless arranged in advance
or prevented by a documented medical or family emergency. If you have three or
more exams scheduled on the same date, or a religious holiday that conflicts with an
exam or assignment due date, please notify me in writing within the first two weeks
of the semester in order to receive due consideration. Exams not taken without one
of the above excuses will be recorded with a grade of 0.

7 Program standards

Every program must contain, in the first few lines, a comment indicating the name(s)
of the student(s) working on it and which assignment it is. Programs not containing
this information, clearly visible, will get a zero.

6



Every program must be accompanied by test cases, so I can see how it actually
works. Programs with inadequate or poorly-chosen test cases will lose points (we’ll
discuss how to choose good test cases); programs turned in with no test runs at all
will lose lots of points.

Having done my share of programming, I know that sometimes you hit a brick
wall and cannot get the thing to work for love or money. If this happens, turn in
the program together with a detailed description of how the program fails, what
you’ve tried in your attempts to fix it, and what went wrong in those attempts,
for partial credit. Note that “how the program fails” does not mean saying “I got
an error message”: you need to tell me which error message you got, when you saw
it, and what you think the error message means. Similarly, if the program fails by
producing wrong answers, you need to tell me when it produces wrong answers (are
they all wrong, or just in a few cases?), how they are wrong (e.g. are all the numbers
consistently higher than you expected, are they the negatives of the correct answers,
or are they all over the place with no apparent pattern?), and your speculations on
how such an error might have arisen. I’m requiring all this not because I’m mean
and horrible, but because by the time you’ve written all this down, you may have
enough information to actually fix the problem, which is much better than turning
it in incomplete.

I also expect you to maintain a log of what kinds of errors you encountered, how
you discovered them, how long it took you to fix them, and what the actual problem
was. This log must be turned in with each homework assignment. I’ve written some
Web-based forms to make it easy to record this stuff, or you may just keep track of
it yourself.

8 Ethics

Most homework assignments in this course involve writing, testing, and debugging
one or more programs. Some of these programs are to be written individually;
for others, you are to work in teams of two students, switching teams from one
assignment to the next, if at all possible. (If you have a really terrible schedule and
can’t get together with a partner, talk to me and we’ll arrange something.)

When I say “teams of two students”, I don’t mean “you write the first half of the
assignment, and I’ll write the second half”; I want both students working together on
all of the assignment, using the techniques of Pair Programming (on which I’ll give
you a reading assignment). I expect people to switch partners from one assignment
to the next, so you get experience working with different people.

It’s hard to define what constitutes “cheating” in this sort of course. Students are
encouraged to help one another with level-1 and level-2 difficulties (“how do I save
this file?”, “what’s the syntax for defining a struct?”, etc.), regardless of whether

7



they’re on the same team, but designing, coding, testing, and debugging should be
done by the one or two people whose names are on the assignment.

It’s remarkably easy for a professor to notice when three different teams have
turned in nearly-identical programs; if that happens, I’ll grade it once and divide
the credit among the three, so the best any of them can hope for is 33%. I don’t try
to figure out who copied from whom; it is your responsibility to not let anyone copy
your homework. Among other things, that means don’t leave it on the “Universal
Share” drive, because anyone at Adelphi can copy it and even delete it.

All work on the final exam and the quizzes must be entirely the work of the one
person whose name is at the top of the page. If I have evidence that one student
copied from another on an exam or quiz, both students will be penalized; see above.

9 Schedule

This class meets for lecture every Monday, Wednesday, and Friday from 10:00–10:50,
and for lab every Monday and Wednesday from 2:25–3:40. Both lab and “lecture”
(although we hope to do very little lecturing) are in Swirbul 100.

All dates in the following schedule are tentative, except those fixed by the Univer-
sity; if some topic listed here as taking one lecture in fact takes two lectures to cover
adequately, or vice versa, the schedule will shift. I’ll try to keep this information up
to date on the class Web page.

When I say “read” above, I mean an active process, involving not only the text-
book but pencil, scratch paper, and a notebook for writing down key points. Finally,
and perhaps most importantly, you’ll need a computer for trying out the new ideas
you find in your reading. Just as you cannot learn about cooking or driving a car
just by reading about it, you cannot learn about programming just by reading about
it. In short, every time you read about a new programming idea, try it!

8


