
Extending the Ihara-Selberg zeta function to hypergraphs

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Mathematics

by

Christopher Storm

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 31st, 2007

Examining Committee:

(chair) Dorothy Wallace

Carolyn Gordon

Carl Pomerance

Cristina Ballantine

Charles K. Barlowe, Ph.D.
Dean of Graduate Students





Abstract

In the late 1960s, Ihara began work that led to the Ihara zeta function, a zeta function

which is defined on a finite graph. This function is an interesting graph invariant

which gives information on expansion properties of the graph. It also appears in

Knot theory and has some information about colorings in graphs.

We propose two generalization of this function to hypergraphs. This will provide

a framework to tie together work by Hashimoto on zeta functions of bipartite graphs

and work by Feng, Li, and Solé on Ramanujan hypergraphs. We will also provide an

example of viewing the generalized hypergraph zeta function as a more specialized

graph zeta function, which allows us greater flexibility in distinguishing cospectral

graphs.
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Introduction

In 1966 and 1968, Yasutaka Ihara wrote two papers in which he set forth the frame-

work to define the Ihara-Selberg Zeta Function on a finite, k-regular graph [17, 18].

This function has proven to be quite fruitful, with applications relating to Ramanujan

graphs, counting spanning trees on graphs, trace formulas on trees, knot theory, and

spectral graph theory in general. As time has passed, there has been a lot of work

done to remove the regularity condition in Ihara’s original formulation as well as to

simplify the factorization of the zeta function. One critical step was in 1989 when

Ki-Ichiro Hashimoto showed that the reciprocal of the zeta function was related to a

determinant involving an operator on the edges of a graph X [16]. Hyman Bass, in

1992, took this one step further by considering operators defined on oriented edges

of X [2]. This last step provided enough flexibility to give a satisfying determinant

expression of the zeta function without too many conditions being imposed upon X.

For a complete picture on the current theory, we refer the interested reader to a series

of articles by Harold Stark and Audrey Terras [34, 35, 36]. There has also, recently,

been a generalization of this theory to digraphs by Hirobumi Mizuno and Iwao Sato

[27, 28].

We hope to continue in this tradition by considering hypergraphs in place of

graphs. Winnie Li [22], Cristina Ballantine [1], and others have begun a discussion of

Ramanujan Hypergraphs, and it seems natural that the next step in pushing Spectral

Hypergraph theory would be to define a meaningful zeta function. There is also some
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potential to connect with some of the theory of Buildings, for which Anton Deitmar

and J. William Hoffman have begun to talk about an Ihara-Selberg Zeta Function

[11]. For a good introduction to current results in Ramanujan Graphs, Spectral Graph

Theory, and Ihara’s Zeta Function, one might consider [30, 7, 34].

We will begin by reviewing many of the definitions and work that goes into defin-

ing and giving a determinant expression for the zeta function. Then we will look

specifically at hypergraphs and form two different zeta functions. We will give ex-

pressions for both zeta functions and discuss some of the resulting properties of our

zeta functions. For graphs, the path from graph to zeta function proceeds roughly in

the following way:

Oriented Graph Oriented Line Graph

Graph Initial determinant expression Bass’s expression

The key step is going from an “Oriented Line Graph” to an initial determinant ex-

pression. This will come from the Perron–Frobenius Theorem and be the same for

our zeta functions as well as for Ihara’s. We will see that for hypergraphs, we’ll have

to take a slightly more general route to get to an “oriented line graph,” but the idea

will be the same. Our further expressions will actually follow largely from results

already in the literature once we see how they fit into our framework.

We can summarize the steps involved in the following flowchart:

Colored Oriented Graph Oriented Line Graph

Hypergraph Initial expression Bass’s expression

Bipartite Graph Hashimoto’s expressions
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Chapter 1

The graph framework

Throughout this and the next chapter, we will try to give a clear and complete

presentation of the Ihara-Selberg zeta function so that we can identify the key points

and techniques used in our generalizations. We will start with some standard graph

theory definitions before moving to the specifics of the zeta function. Then, we

will follow the path from graph to zeta function as detailed by Motoko Kotani and

Toshikazu Sunada [21]. Their strategy is to relate a graph to a strongly connected

oriented graph which has a similar cycle structure; then, they take advantage of

existing theorems in symbolic dynamics to give an initial determinant expression, thus

relating the general graph problem to a much easier problem on oriented graphs. After

they have an initial expression, they are able to reproduce Bass’s expression. Though

the process appears long and overly complicated, once we’ve seen the method once,

we will be able to cut out the middle steps and jump straight to a useful expression

so that in practice, computing the zeta function is quite simple. We will conclude by

looking at a few consequences of the determinant expression that help illustrate why

the Ihara-Selberg zeta function is a fruitful function to study.
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1.1 What is a graph?

We begin by looking at some basic properties of graphs. For a good introduction to

many of the ideas here, we refer to the reader to Douglas West’s book [37] or to Fan

Chung’s book for more detailed spectral results [7].

Definition 1.1.1. A graph X = (V, E) is a set V of vertices and a multiset E of

unordered pairs of vertices, called edges. If {u, v} ∈ E, we say that u is adjacent to

v and write u ∼ v. X is finite if |V | and |E| are both finite. A graph X is simple

if there are no edges of the form {v, v} and if there are no repeated edges. Finally,

the degree of a vertex v ∈ V , denoted d(v) is the number of vertices to which v is

adjacent, counting potential multiplicities.

Figure 1.1 is an example of a simple graph X with V = {v1, v2, v3, v4} and E =

{{v1, v2}, {v1, v3}, {v1, v4}, {v2, v4}, {v3, v4}}. We will refer back to this graph as we

follow it through the steps needed to compute the Ihara-Selberg zeta function. We

will call this graph G1 for future reference.

•
v3

•
v4

•
v1 •

v2

Figure 1.1: G1: a subgraph of the complete graph on 4 vertices

A path on a graph is a sequence of vertices {v1, v2, · · · , vn} such that {vi, vi+1} ∈ E

for 1 ≤ i < n. The graph is connected if there exists a path from x to y for any vertices

x 6= y ∈ X. In general, we will only consider connected graphs as any graph that

is not connected can be broken up and considered as a union of connected graphs.

While we are discussing paths, we make two other definitions, which will be useful

later:
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Definition 1.1.2. Let G be a connected graph, and let x, y ∈ V .

1. The distance between x and y, written d(x, y) is the fewest number of edges

needed to have a path from x to y.

2. The diameter of a graph, often denoted D, is the maximum distance over all

pairs of vertices.

By a function on a graph X, we mean a map from the vertices of X into the

real numbers. We denote by C(V ) the space of functions on X. When our graph is

finite, we can actually think of a function f ∈ C(V ) as a vector in R|V | by viewing

the ith entry of the vector as f(vi). In fact, we can define addition of two functions

f, g ∈ C(V ) and scalar multiplication by the formula

(f + g)(v) = f(v) + g(v), ∀ v ∈ V

(cf)(v) = c(f(v)), ∀ c ∈ R and ∀ v ∈ V.

Then C(V ) is a |V |-dimensional real vector space.

Remark 1.1.3. There is a standard basis for C(V ) given by functions δi(vj) = 1 if

i = j and 0 otherwise.

There is a very important linear operator A on C(V ) called the adjacency operator,

given by:

(Af)(x) =
∑

x∼y

f(y), (1.1)

for all x ∈ V .

This operator plays a central role in the study of spectral graph theory, as we will

see shortly. First, we look at the matrix interpretation of this operator. If we label

the vertices of a graph and take the basis defined in Remark 1.1.3, we can write A as
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a matrix, called the adjacency matrix, with its i, j-entry given by ai,j:

ai,j =



















m if {vi, vj} ∈ E,

0 otherwise,

(1.2)

where m is the number of times {vi, vj} is listed in E.

Example 1.1.4. The adjacency matrix of G1, the graph given in Figure 1.1, is

A =

























0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

























.

Remark 1.1.5. In general, the matrix defined in this way will be a symmetric |V | ×

|V | matrix with non-negative integer entries. We can also reverse this process: if

we are given some symmetric matrix A with non-negative integer entries, we can

construct a graph X with adjacency matrix A. To do this, we label the rows and

columns of our matrix by {v1, v2, . . . , vn}. Then we form the graph X with vertex

set V = {v1, v2, . . . , vn} and edge set given by: {vi, vj} ∈ E with multiplicity ai,j.

It’s important that the given matrix be symmetric because the elements of E are

unordered pairs so that {vi, vj} ∈ E if and only if {vj, vi} ∈ E. This idea will prove

to be important later.

1.1.1 The spectrum of a graph

There are several important questions in graph theory that are related to the ad-

jacency operator. Given a graph, we might ask how many steps you have to take

before a random walk converges to the point where you are equally likely to be at

any vertex on the graph. A similar question asks how efficiently information flows in
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a computer network. These questions are best answered by looking at the spectrum

of the adjacency operator of the graph.

We first note that vertex x is adjacent to y if and only if vertex y is adjacent to

x. This forces the adjacency operator A to be a symmetric operator. Thus, all of

the eigenvalues of A must be real [13]. For a graph X, we denote the spectrum of A

by spec(A) or sometimes spec(X). When X is a finite graph, there are only finitely

many eigenvalues λi, which we order by size.

Proposition 1.1.6. Let A be the adjacency matrix of a graph X, and let ∆ be the

maximum degree of vertices of X. Then |λ| ≤ ∆, for all λ ∈ spec(A).

Proof. Let x be an eigenvector of A with eigenvalue λ. By definition, Ax = λx.

We write x = (x1, · · · , xn)t and assume, without loss of generality, that |x1| =

max1≤i≤n |xi|. Then, we have

|λ||x1| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

a1jxj

∣

∣

∣

∣

∣

∣

≤ |x1|
n
∑

j=1

a1j

where the equality is given by matrix multiplication, and the inequality is because

|x1| was assumed to be the maximum value and that each ai,j ≥ 0. But
n
∑

j=1
a1j is

exactly d(v1), so we have

|x1|
n
∑

j=1

a1j = |x1|d(v1) ≤ |x1|∆.

We note that x1 6= 0 since x is an eigenvector and not zero. Dividing through by |x1|

completes the proof.

Usually, we will order the eigenvalues by size; then, we can write

∆ ≥ λ1 ≥ λ2 ≥ · · · ≥ λ|V | ≥ −∆. (1.3)
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We say that a graph X is k-regular if every vertex is adjacent to exactly k other

vertices. In this case, k is actually an eigenvalue with eigenfunction the constant

function, and all of the other eigenvalues are less than or equal to k in absolute value,

by the proposition, so we can say a bit more:

k = λ1 ≥ λ2 ≥ · · · ≥ λ|V | ≥ −k. (1.4)

The fundamental question then becomes how large is |λi| when i is not 1. To see

the importance of this, imagine that you are looking at a random walk on a k-regular

graph. At each step, you can move to k places. To model the number of times you can

visit each vertex in m steps, you apply the adjacency operator m times. As m grows

large, λ1 will begin to dominate and you will be forced into being just as likely to be

at one vertex as any other. The speed at which this happens is determined by the size

of the second largest eigenvalue in absolute value. To have a random walk converge

quickly, it’s important that |λi|, and particularly the second largest eigenvalue in

absolute value, be as small as possible. In general, λ2 = λ1 if and only if the graph

is not connected. We also have λ|V | = −k if and only if the graph is bipartite [37].

Studying this eigenvalue question leads to the celebrated Alon–Boppana Theorem,

which gives us a bound on how small the second eigenvalue can be as our graphs get

large [24].

Theorem 1.1.7 (Alon–Boppana). Let {Xm} be a family of connected k-regular graphs

with |V (Xm)| → ∞ as m → ∞. Then

lim inf
m→∞

λ2(Xm) ≥ 2
√

k − 1.

We defer the proof of the theorem to Corollary 3.2.6 for a more general result.

8



This Theorem led Alexander Lubotzky, Ralph Phillips, and Peter Sarnak to make

the following definition [24]:

Definition 1.1.8 (Lubotzky, Phillips, and Sarnak). A (q + 1)-regular graph is Ra-

manujan iff for every eigenvalue λ of the adjacency operator A such that |λ| 6= q + 1,

we have:

|λ| ≤ 2
√

q.

The terminology “Ramanujan” comes from a deep connection to the Ramanujan–

Petersson conjecture for congruence subgroups which was proved by Deligne. One

method of constructing Ramanujan graphs involves exploiting the continuous struc-

tures to build graphs with the appropriate spectra.

For a long time, it was an open problem to construct an infinite family of such

graphs. Lubotzky, Phillips, and Sarnak as well as Moshe Morgenstern were finally

able to construct such families using number theoretic and other methods [24, 29].

The known constructions produce k-regular Ramanujan graphs with k a prime power

or k−1 prime. It is still an open question to construct infinite families of Ramanujan

graphs for other values of k. For current results in Ramanujan graphs, we recommend

a survey by Murty [30]. We will see that the Ihara-Selberg zeta function will have a

great deal to say about whether a given k-regular graph is Ramanujan or not.
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Chapter 2

The Ihara-Selberg zeta function

Our focus of this chapter will be the definition and determinant expressions of the

Ihara-Selberg zeta function. We will take a historical approach, beginning with the

main definition. From there, we will outline the graph constructions that let us change

the problem of factoring the Ihara-Selberg zeta function of a graph into a problem of

factoring a zeta function of an oriented graph, which is much easier. From our initial

expression, we will jump to the expression given by Hyman Bass. This will enable us

to talk about a “Riemann Hypothesis” for the zeta function and study some of the

properties associated with it.

We will see that for k-regular graphs, the Ihara-Selberg zeta function satisfies

many of the properties that number theorists look for in a reasonable zeta function:

Euler product expansion, functional equations, and a “Riemann hypothesis” (that is

sometimes true and sometimes not). We will also be able to see some properties of

a graph that are determined by the zeta function. For the most part, this chapter is

a survey of known results until the end when we discuss the coefficients of the zeta

function.

10



2.1 The definition

Before we can define the Ihara-Selberg zeta function of a graph, we must decide on

our notion of a “prime.” Then we will define the zeta function as a product over our

primes, copying the general form of the Euler product expansion of the Riemann zeta

function. Our “primes” will be a special family of cycles in the graph which have no

backtracking or tails. We need to make several definitions. Throughout this section,

we will assume, unless specified otherwise, that X is a finite, connected graph.

A closed path in X is a sequence c = (v1, e1, v2, e2, · · · , vk, ek, v1) such that vi ∈

ei−1, ei for i ∈ Z/kZ. Note that this implies that v1 ∈ ek so that this path really is

“closed.” We say that c has backtracking if there is a subsequence of c of the form

(vi, ei, vi+1, ei, vi). Intuitively, at some point this means we leave a vertex via an edge

e and then take that same edge directly back to the vertex. If X has multiple edges,

it’s possible to return directly to the previous vertex without “backtracking” so long

as you use a different edge or a loop. We emphasize that backtracking requires using

the same edge twice in sucession. By cr, we mean the closed path obtained by going

r times around c. We say that c is tail-less if c2 does not have backtracking. We

will say that c is a closed geodesic if c has no backtracking and is tail-less. Finally,

a closed geodesicc is primitive if it is not br for some other geodesic b and integer

r ≥ 2. The length of a primitive geodesic c, denoted |c|, is the number of edges in the

sequence.

We define an equivalence relation on primitive geodesics. We say that two primi-

tive geodesics c and b are equivalent if one is a cyclic permutation of the other. See

Figure 2.1 for an example of two equivalent, primitive geodesics. We call a represen-

tative of [c] a prime cycle and the equivalence class a prime cycle class.

We gather all of the pertinent definitions together for future use:

Path Criteria 1. Let X be a graph. Then,

11



•
v1

•
v2

•
v3

e1 e2

e3

Figure 2.1: The primitive geodesic {v1, e1, v2, e2, v3, e3, v1} is equivalent to
{v2, e2, v3, e3, v1, e1, v2}.

1. A closed geodesic c is a closed path with no backtracking or tails.

2. A closed geodesic is primitive if it is not br for some other geodesic b and integer

r ≥ 2.

3. A prime cycle c is a representative of the equivalence class [c] of primitive closed

geodesics, identified by cyclic permutation.

We now have everything we need to define the Ihara-Selberg zeta function:

Definition 2.1.1. Let P be the set of all prime cycle classes of a finite, connected

graph X. Then the Ihara-Selberg zeta function ZX(u) is given, for sufficiently small

u ∈ C, by

ZX(u) =
∏

p∈P

(

1 − u|p|
)−1

. (2.1)

Remark 2.1.2. Unless our graph has just two or fewer prime cycle classes, we have

an infinite number of prime cycles. We see this by considering two primitive cycles α

and β, with β not given by taking α in the opposite direction, which intersect. We

shift them so that they both start at the same vertex v and assume, without loss

of generality, that β contains an edge that α does not; then, the cycle αnβ will be

primitive for any n ∈ Z+ since any edge that is in β but not α will only appear once.

This means the zeta function is, in general, an infinite product.

12



A priori, ZX(u) is quite difficult to express nicely for computational purposes. We

will do it in two stages. First, we will write ZX(u) to realize it as the determinant

of some linear operators. Then, with some linear algebra, we can produce a much

nicer expression. In practice, we will be able to jump directly to the final, explicit

expression and skip all of the intermediate steps. We will go through the steps to

get the initial determinant expression in detail since this is the process we will need

when we change our view to hypergraphs. The strategy is to construct from X a new

directed graph XL which is strongly connected and has the same “cycle structure” as

X. Then we can make use of the Perron–Frobenius operator and an easy lemma of

Rufus Bowen and O.E. Lanford III [6] to produce our initial expression. For a more

detailed look at this strategy, we note that this is Kotani and Sunada’s method [21].

2.2 From connected graph to oriented graph

In this section, we will show how to start with a graph X and produce an oriented

graph Xo
L which has the same cycle structure as X. We will see that Xo

L satisfies the

conditions of the Perron–Frobenius theorem, so we will be able to produce an initial

expression of the Ihara-Selberg zeta function using that framework.

Since we will be working with oriented graphs, we need a few extra tools to help

us. An oriented edge e = {x, y} is an ordered pair of vertices x, y ∈ V . We say that

x is the origin of e, denoted by o(e), and y is the terminus of e, denoted by t(e). We

also have the inverse edge ē given by switching the origin and terminus. In a general

oriented graph, we may not have the inverse edge in the given edge set; however, the

oriented graphs we consider will be constructed to always have the inverse edge.

Let X be a finite connected graph. We label the edges of X: E = {e1, e2, · · · , en}.

By an orientation on X, we mean a choice of direction for each edge ei ∈ E; i.e.,

given an edge, we specify a origin vertex and a terminus vertex. Our first step will

13



•
v3

•
v4

•
v1 •

v2e1

e2
e3 e4

e5 •
v3

•
v4

•
v1 •

v2a1

a2
a3 a4

a5

Figure 2.2: Orienting the graph G1.

•
v3

•
v4

•
v1 •

v2a1

a2
a3 a4

a5 •
v3

•
v4

•
v1 •

v2
a1

b1

a2

b2
a3b3 a4b4

a5

a5

Figure 2.3: Completing the orientation on G1.

be to orient the graph X. To maintain clarity, we relabel the edges {a1, · · · , an}. In

general, there are many different possible orientations you can choose. We will see in

the end that the final expression is independent of orientation, so there is no problem

if you change orientations. See Figure 2.2 for one way to orient G1.

Once we’ve oriented our graph X, our next step is to add in the opposing orien-

tation. We will let bi be the oriented edge which is opposite of ai. In the event that

ai is an oriented loop, we let bi be an additional oriented loop from the same vertex.

In this case, bi is the inverse edge of ai and vice versa. We denote the graph formed

in this manner by Xo. Then Xo is a graph with 2|E| oriented edges. We complete

the orientation started for G1 in Figure 2.3.

Finally, we construct the oriented line graph Xo
L = (VL, Eo

L) associated with our
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•a1

•a2

•
a3 •

a4

•a5

•b1

•
b2

•
b3

•
b4

•
b5

•
v3

•
v4

•
v1 •

v2
a1

b1

a2

b2
a3b3 a4b4

a5

a5

Figure 2.4: Construction of an oriented line graph of G1.

choice of Xo by

VL = E(Xo),

Eo
L = {(ei, ej) ∈ E(Xo) × E(Xo); ēi 6= ej , t(ei) = o(ej)}.

We can think of EL as the set of paths of length 2 without backtracking in Xo. This

graph is also oriented, with incidence map (o, t) induced from the identity map on

E(Xo) × E(Xo). Intuitively, we are building a graph which has vertices given by

“legal” moves you could make to get a geodesic. Ruling out backtracking is why

we explicitly disallow {e, ē} in forming the edge set. If we had chosen a different

orientation when we formed Xo, we would get the same oriented line graph but with

a different labeling. See Figure 2.4 for the resulting graph Xo
L that corresponds to

our choice of orientation for G1.

We will leave this construction for a moment and take a short diversion into the

Perron–Frobenius framework. Once we have developed the appropriate tools, we will

return to the construction of an oriented line graph, showing that it satisfies several
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Figure 2.5: The oriented graph on the left is strongly connected; whereas, the graph
on the right is not strongly connected since there is no admissible path from x to y.

nice conditions, and then rewrite the zeta function as a determinant expression.

2.3 The Perron–Frobenius framework

We will try to keep this section completely self-contained until the end, when we apply

the tools described here to oriented line graphs. It should be noted that we are still

following the method laid out by Kotani and Sunada [21]. We assume throughout

that Xo = (Vo, Eo) is a finite oriented graph. We repeat many of the path and cycle

definitions from before to see how they fit into this context.

An admissible path in Xo is a sequence c = (e1, · · · , ek) where ei ∈ Eo and t(ei) =

o(ei+1) for every i. We let o(c) = o(e1) and t(c) = t(ek). Then, the admissible path

c is closed if t(c) = o(c). The oriented graph Xo is strongly connected if, for any

x, y ∈ Vo, there exists an admissible path c with o(c) = x and t(c) = y. It’s helpful to

think of this as an analogue for connected in the unoriented case. We give in Figure

2.5 an example of an oriented graph which is strongly connected and one which is

not.

For m ≥ 1 ∈ Z, we let Nm be the number of admissible closed paths of length m

in Xo. Then, we define the zeta function of Xo by

Zo
Xo

(u) = exp

( ∞
∑

m=1

1

m
Nmum

)

. (2.2)
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The motivation for this definition comes from the shape of the Weil zeta functions of

projective algebraic varieties over finite fields [19, 20].

Rationality of Zo
Xo

(u) will follow from the Perron–Frobenius operator T : C(Vo) 7→

C(Vo) given by

(Tf)(x) =
∑

e∈E0(x)

f(t(e)),

where E0(x) = {e ∈ Eo | o(e) = x} is the set of all oriented edges with x as their

origin vertex. We think of T as an oriented version of the adjacency operator on

non-oriented graphs. With this in mind, we see that taking a power of T has a nice

representation given by

(T nf)(v) =
∑

ad. paths c
|c|=n; o(c)=v

f(t(c)). (2.3)

This operator is the focus of much study, but we will take only a few of the results

about it for our uses. By the Perron–Frobenius theorem [14], we have

Lemma 2.3.1. Let Xo be a finite, strongly connected, oriented graph with Perron–

Frobenius operator T . We denote by (T1), the Perron–Frobenius operator applied to

the constant function 1. Then,

1. T has at least one positive eigenvalue. The maximal positive eigenvalue, called

the Perron–Frobenius root and denoted α, is simple and has a positive-valued

eigenfunction.

2. |λ| ≤ α for any eigenvalue λ of T .

3. minv∈Vo(T1)(v) ≤ α ≤ maxv∈Vo(T1)(v).

4. If Tf = λf, f ≥ 0, f 6= 0, then λ = α and f > 0.

We refer the reader to [14] for a proof.
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When Xo is not just a cycle, we have the following lemma from Rufus Bowen and

O. E. Lanford III [6] which gives us the determinant expression of Zo
Xo

(u) that we are

looking for.

Lemma 2.3.2 (Bowen and Lanford). Let Xo be a finite, strongly connected, oriented

graph which is not just a cycle, and let T be the associated Perron–Frobenius operator

with Perron–Frobenius root α. Then,

1. The power series
∞
∑

m=1

1
m

Nmum converges absolutely when |u| < α−1.

2. Zo
Xo

(u) = det(I − uT )−1. In particular, Zo
Xo

(u) is a rational function of u and

has a simple pole at u = α−1.

Proof. 1. Let δv denote the indicator function on the set {v}. Then by (2.3)

(Tmδv)(w) = #{c | admissible paths with o(c) = w, t(c) = v, |c| = m}.

We can sum the above quantity over all of the functions δv for v ∈ Vo to recover the

trace of a power of T in the following way:

tr Tm =
∑

v∈Vo

(Tmδv)(v) = Nm.

However, we also know, from elementary linear algebra, that the trace relates the

operator to its eigenvalues by

trTm = Nm =
∑

λi∈spec(T )

λm
i .

Recalling that α is the largest eigenvalue in absolute value lets us conclude that
∞
∑

m=1

1
m

Nmum converges absolutely when |u| < α−1.

2. Let {λ1, · · · , λ|Vo|} be the spectrum of T . We first recall the definition of Zo
Xo

(u)

18



and then rewrite the series in terms of the eigenvalues since trTm = Nm:

Zo
Xo

(u) = exp

( ∞
∑

m=1

1

m
Nmum

)

= exp





∞
∑

m=1

|Vo|
∑

i=1

1

m
λm

i um



 .

Now we use the series expansion − log(1 − x) =
∞
∑

k=1

1
k
xk with x = λiu:

Zo
Xo

(u) = exp





∞
∑

m=1

|Vo|
∑

i=1

1

m
λm

i um



 =
|Vo|
∏

i=1

exp(− log(1 − λiu))

=
|Vo|
∏

i=1

1

1 − λiu
= det(I − uT )−1.

The final equality follows because I and T commute, allowing us to simultaneously

diagonalize them.

In the context of finite, strongly connected, oriented graphs, this lemma gives us

exactly what we need. The zeta function must equal the reciprocal of a finite degree

polynomial with constant term 1. In particular, it is a rational function with only

finitely many poles. Our job now is to connect this zeta function with the Ihara-

Selberg zeta function defined in Definition 2.1.1. To do this, we must do two things:

rewrite the oriented graph zeta function so that it looks like a product instead of a

sum. Then, we must show how the cycle structure of a finite, connected graph X

relates to the cycle structure of an oriented line graph Xo
L constructed in the previous

section. We will begin by establishing the Euler product expansion.

We let P be the set of prime cycles, defined by imposing the same equivalence

relation as before on closed, primitive admissible paths, of a finite, strongly connected,

oriented graph Xo. We denote by Mk the number of prime cycles of length k. The

following lemma relates Mk and Nm:

Lemma 2.3.3 (Sunada). Let Xo be a finite, strongly connected, oriented graph. Let

Mk denote the number of admissible prime cycles of length k and Nm the number of
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closed admissible paths of length m. Then,

∑

k|m
kMk = Nm,

where k runs over all divisors of m.

Proof. We first consider a representative c of a prime cycle of length k. If k divides

m, then we get a closed path of length m by going m
k

times around c; i.e. by taking

c
m
k . Recalling the equivalence relation, we see that there are exactly k closed paths

of length m that arise from [c]. Hence, each prime cycle of length k yields k closed

paths of length m whenever k|m. This establishes:

∑

k|m
kMk ≤ Nm.

The other direction of the inequality follows because we are looking at directed graphs.

Since there is no possibility of backtracking or tails, the only consideration is that a

closed path is the k-multiple of some other closed path. Suppose b is a closed path

of length m, and b = ck for k ∈ N with c a primitive closed path – in the sense that c

is not a non-trivial k-multiple of some other closed path. Then c is a representative

of a prime cycle, and k|c| = |b| = m, so k|m. Hence, b is counted in
∑

k|m
kMk, which

gives:
∑

k|m
kMk ≥ Nm.

We have the following Euler product expansion for the zeta function of Xo [21]:

Theorem 2.3.4 (Sunada). Let Xo be a finite, strongly connected, oriented graph, and
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let P be the set of admissible prime cycles of Xo. Then,

Zo
Xo

(u) =
∏

p∈P

(

1 − u|p|
)−1

.

Proof. We begin with Definition 2.2 and consider log Zo
Xo

(u):

log Zo
Xo

(u) =
∞
∑

m=1

1

m
Nmum.

We invoke Lemma 2.3.3 to break the sum up:

∞
∑

m=1

1

m
Nmum =

∞
∑

m=1

1

m

∑

l|m
lMlu

m.

Now we make the substitution kl = m:

∞
∑

m=1

1

m

∑

l|m
lMlu

m =
∞
∑

l,k=1

1

k
Mlu

kl.

We split the sum out again:

∞
∑

l,k=1

1

k
Mlu

kl =
∞
∑

k=1

1

k

∞
∑

l=1

Mlu
kl.

The number of prime cycles of length l is exactly Ml:

∞
∑

k=1

1

k

∞
∑

l=1

Mlu
kl =

∞
∑

k=1

1

k

∞
∑

l=1

∑

p∈P
|p|=l

ukl.

We now switch the summation order and group the outer sum into a sum over the

prime cycles:
∞
∑

k=1

1

k

∞
∑

l=1

∑

p∈P
|p|=l

ukl =
∑

p∈P

∞
∑

k=1

1

k
uk|p|.
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Since u is small, and |p| ≥ 2, we can use the series expansion log 1
1−x

=
∞
∑

k=1

1
k
xk:

∑

p∈P

∞
∑

k=1

1

k
uk|p| =

∑

p∈P

log
1

1 − u|p| .

Thus Zo
Xo

(u) =
∏

p∈P

(

1 − u|p|
)−1

.

The Euler product expansion has exactly the same form as the definition for

the Ihara-Selberg zeta function. For a finite connected graph X, if we construct

an oriented line graph Xo
L and can show that prime cycles in X are in one-to-one

correspondence with prime cycles in Xo
L of the same length, we will be able to conclude

that ZX(u) = Zo
Xo

L
(u) = det(I − uT )−1 where T is the Perron–Frobenius operator

associated with Xo
L.

2.3.1 Linking the Ihara-Selberg zeta function to oriented line

graphs

We can now explicitly connect the Ihara-Selberg zeta function to the Perron–Frobenius

operator of an associated line graph. We let X = (V, E) be a finite, connected graph

and Xo
L an oriented line graph constructed from X.

Lemma 2.3.5 (Sunada). There is a one-to-one correspondence between admissible

paths of length k in Xo
L and geodesics of length k in X.

Proof. Let c = (v1, e1, · · · , vk, ek, vk+1) be a geodesic of length k in X. This corre-

sponds to the path co = (({v1, v2}, {v2, v3}), ({v2, v3}, {v3, v4}), · · · , ({vk−1, vk},

{vk, vk+1})) in Xo
L. Thus, co is an admissible path because the oriented graph Xo

was constructed to have all ordered pairs {vi, vj} (provided {vi, vj} is an edge in X)

as oriented edges, so we see that ({vi, vi+1}, {vi+1, vi+2}) ∈ Eo
L by construction. The

length of co is exactly k, the same length as c.
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All edges in Eo
L are of the form ({vi, vj}, {vj, vk}) whenever {vi, vj} and {vj , vk} ∈

E, by construction, so we can represent an arbitrary admissible path as co = (({v1, v2},

{v2, v3}), ({v2, v3}, {v3, v4}), · · · , ({vk−1, vk}, {vk, vk+1})). For ({vi, vi+1},

{vi+1, vi+2}) ∈ Eo
L, we must have {vi, vi+1} and {vi+1, vi+2} ∈ E. Then co corresponds

to the geodesic c = (v1, {v1, v2}, v2, {v2, v3}, · · · , vk, {vk, vk+1}, vk+1) in X. The only

problem is that c may have backtracking, but this can only occur if {vi, vi+1} =

{vi+1, vi+2}, as unordered pairs, for some i. This would mean that vi = vi+2, but this

would force us to have the oriented edge {vi, vi+1} and its inverse {vi+1, vi} adjacent

to each other in Xo
L. This was explicitly disallowed by the construction of Xo

L, so c

cannot have backtracking and is thus a geodesic. Thus, c has the same length as co.

So we see that there is a one-to-one correspondence between geodesics of length k in

X and admissible paths of length k in Xo
L.

In particular, let us look at cycles in X and Xo
L:

Corollary 2.3.6 (Sunada). Let X be a finite, connected graph and Xo
L an oriented

line graph associated with X. Then,

1. There is a one-to-one correspondence between admissible prime cycles in Xo
L

and prime cycles in X of the same length.

2. ZX(u) = Zo
Xo

L
(u) = det(I − uT )−1, where T is the Perron–Frobenius operator

on Xo
L.

Proof. 1. The assertion follows directly from the previous lemma by considering cycles

instead of paths and noting that the prime classes come from the same equivalence

relation on both sides.

2. The equality ZX(u) = Zo
Xo

L
(u) follows from Definition 2.1.1, Theorem 2.3.4,

and part 1 above. The second part of the equality Zo
Xo

L
(u) = det(I − uT )−1, where T

is the Perron–Frobenius operator, follows from Lemma 2.3.2.
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This corollary is exactly what we were looking for. Given a finite graph X, we

can now realize the Ihara-Selberg zeta function, which is defined as a possibly infinite

product, as a rational function which we know how to calculate. As an example, we

compute the Ihara-Selberg zeta function of G1.

Example 2.3.7. We wish to compute the Ihara-Selberg zeta function for the graph

G1, shown in Figure 1.1. We’ve already written down an oriented line graph associated

with G1 in Figure 2.4. From that, we compute

T =









































































0 0 0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0









































































.

Computing det(I − uT )−1 then gives us

ZG1(u) =
1

1 − 4u3 − 2u4 + 4u6 + 4u7 + u8 − 4u10
.

The main issue now is that it takes several steps to produce the Perron–Frobenius

operator that shows up in the determinant expression. However, by writing the zeta

function as a determinant, we’ve given ourselves a starting point to use linear algebra

to factor it further. Hyman Bass provided, in 1992, a further determinant expression

which is much more useful [2].
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2.4 Bass’s expression and consequences

We will give the main result of this section without proof but will refer the interested

reader to Bass’s paper [2] or to Kotani and Sunada’s paper [21]. Bass uses non-

commutative determinants to derive the main result; while, Kotani and Sunada use

linear algebra and vector space decomposition. Before we state Bass’s theorem, we

need to define one more operator on C(V ). Throughout this section, our graphs will

be finite and connected.

We first define a function q : V 7→ Z by q(v) = d(v) − 1, where d(v) is the degree

of vertex v as defined in Definition 1.1.1. Then we define Q : C(V ) 7→ C(V ) by

(Qf)(v) = q(v)f(v). Taking the standard basis, we see that Q is represented by a

diagonal matrix with q(vi) on the diagonals.

Bass gave the following expression of ZX(u), even in the case when X is not a

regular graph [2]. For regular graphs, Ihara gave this same formulation [17]:

Theorem 2.4.1 (Bass). Let X be a finite, connected graph with adjacency operator

A and operator Q as defined above. Let I be the identity operator on C(V ). Then,

ZX(u) = (1 − u2)χ(X) det(I − uA + u2Q)−1

where χ(X) = |V | − |E| is the Euler Number of the graph X.

In general, χ(X) ≤ 0 with equality if and only if X is just a cycle. Thus, we are

actually seeing an expression that looks like the reciprocal of a polynomial. From a

historical perspective, we should note that Ihara proved the above result for k-regular

graphs X via a combinatorial argument [17]. Ihara’s result can be associated with

degree p + 1 graphs associated with a co-compact discrete subgroup of the p-adic

linear group SL2(Qp). His proof relied heavily on the combinatorial nature of the

underlying Hecke algebra, which we cannot generalize to include non-regular graphs.
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This problem explains the 26-year gap between Ihara’s paper and Bass’s general

expression.

With this expression in hand, we can safely forget about the constructions nec-

essary to use the Perron–Frobenius operator. We’ve written the Ihara-Selberg zeta

function as a product of (1 − u2) to an easily computable power and as a determi-

nant of operators which are easy to compute from X. This formulation is easier to

deal with since all of the operators are defined on X, allowing us to forget about the

oriented line graph construction if we are only interested in the zeta function.

Now that we have a satisfying expression for the zeta function, we can begin to

ask some more structural questions. What does the Ihara-Selberg zeta function tell

us about the graph? How many graphs have the same Ihara-Selberg zeta function?

How are those graphs related, if at all? How are the poles of the Ihara-Selberg

zeta function distributed for random graphs? We first show a connection between

the distribution of poles of the Ihara-Selberg zeta function and Ramanujan graphs.

Then, in the next section we will look at some thoughts on which graphs can have

the same zeta function.

The Riemann hypothesis for the Riemann zeta function says that if 0 < Re s < 1

and ζ(s) = 0, then Re(s) = 1
2
. Thus, all of the non-trivial zeroes conjecturally lie on

the line 1
2

+ it. We can make a similar definition for the Ihara-Selberg zeta function:

Definition 2.4.2 (Ihara). Suppose X is a finite connected (q+1)-regular graph. Then

ZX(u) satisfies the Riemann hypothesis iff for

Re(s) ∈ (0, 1), Z−1
X (q−s) = 0 =⇒ Re(s) =

1

2
.

While the Riemann hypothesis is still unknown for Riemann’s zeta function, in

our case, we have a complete solution as a corollary of Bass’s work:

Corollary 2.4.3 (Ihara). Assume X is a finite, connected (q+1)-regular graph. Then,
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ZX(u) satisfies the Riemann hypothesis if and only if X is a Ramanujan graph.

We will break the proof up into several lemmas. This is the same spirit of proof

as found in [21]. We assume throughout that X is a (q + 1)-regular graph.

Lemma 2.4.4. Suppose λ ∈ R, q > 0, and |λ| ≤ 2
√

q. Let f(u) = qu2 − λu + 1.

Then the roots of f(u) lie in the complex plane on the circle |u| = q−
1
2 .

Proof. By the quadratic formula, f(u) has roots at

u =
λ ±

√
λ2 − 4q

2q
.

Since |λ| ≤ 2
√

q, the discriminant is non-positive, so the roots are
λ±i

√
−λ2+4q

2q
. They

lie on the circle given by

|u|2 =
λ2

4q2
+

−λ2 + 4q

4q2
= q−1.

Hence, u lies on the circle |u| = q−
1
2 .

Lemma 2.4.5. Suppose λ ∈ R, q > 0, and q+1 > |λ| > 2
√

q. Let f(u) = qu2−λu+1.

Then f(u) has a root on the real axis of the complex plane in the interval [q−
1
2 , 1) or

the interval (−1,−q−
1
2 ].

Proof. The quadratic formula gives us roots at

u =
λ ±

√
λ2 − 4q

2q
.

If q + 1 > λ > 2
√

q, the root with the plus sign is in [q−
1
2 , 1); while if −(q + 1) < λ <

−2
√

q, the root with the negative sign is in (−1,−q−
1
2 ].

We state one more quick lemma before we look at the structure of the Ihara-

Selberg zeta function.
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Lemma 2.4.6. Let q ∈ Z+. For u ∈ C, the identification u = q−s sends points on the

circle |u| = q−
1
2 to points on the line s = 1

2
+ it where t ranges over the real numbers.

We now need a lemma to show us how to find the poles of the Ihara-Selberg zeta

function of a (q + 1)-regular graph.

Lemma 2.4.7. Suppose X is a (q + 1)-regular graph. Then we can write ZX(u) as

ZX(u) = (1−u2)χ(X) det(I − uA + qu2I)−1 = (1− u2)χ(X)
∏

λi∈spec A

(

1 − λiu + qu2
)−1

.

Proof. We use Theorem 2.4.1 for the first equality. The matrix A is symmetric, so

there exists some matrix Q such that QAQ−1 is diagonal. Since determinants are

invariant under conjugation, we can write

det(I − uA + qu2I) = det(Q(I − uA + qu2I)Q−1)

= det(QIQ−1 − uQAQ−1 + qu2QIQ−1)

= det(I − uQAQ−1 + qu2I)

=
∏

λi∈spec A

(

1 − λiu + qu2
)

.

The last equality follows because we’re actually taking the determinant of a diagonal

matrix with entries on the diagonal of the form 1 − λiu + qu2.

Lemma 2.4.7 combined with the previous three lemmas serve to tell us exactly

where the poles of a (q + 1)-regular graph’s zeta functions lie. We now complete the

proof to Corollary 2.4.3.

Proof. Suppose that X is a (q + 1)-regular Ramanujan graph. We consider the ex-

pression ZX(u) = (1−u2)χ(X) det(I−uA+qu2I)−1 and ask where poles might appear.
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The term (1 − u2)χ(X) only contributes poles at u = ±1. Rewriting u as q−s, we see

that Re(s) = 0, which is outside of (0, 1) for these poles.

Thus, we need only consider the poles that come from the determinant expression.

By Lemma 2.4.7, we can actually reduce this to considering zeroes of the polynomial

f(u) = qu2 −λiu+1 for λi ∈ Spec A. There are two cases to consider. First, since X

is (q + 1)-regular, at least one eigenvalue satisfies λ = q + 1. In this case, we see that

f(u) has zeroes at 1 and at 1
q
, corresponding to Re(s) = 0 and 1. These are outside

the interval Re(s) ∈ (0, 1). Since the graph is Ramanujan, all other eigenvalues satisfy

|λ| ≤ 2
√

q. Applying Lemma 2.4.4 followed by Lemma 2.4.6 puts all of the zeroes on

Re(s) = 1
2

as desired.

Thus, if X is Ramanujan, any pole of ZX(q−s) with Re(s) ∈ (0, 1) must actually

satisfy Re(s) = 1
2
. To prove the other direction, we note that if X is not Ramanujan,

it has an eigenvalue λ in the interval q + 1 > |λ| > 2
√

q. A similar analysis as before

and an application of Lemma 2.4.5 gives us a pole in the wrong location. Thus, the

Riemann Hypothesis cannot hold for a non-Ramanujan (q + 1)-regular graph.

We’ve actually said quite a bit about the poles. Another way to rephrase the

Riemann hypothesis is as follows: a (q+1)-regular graph’s Ihara-Selberg zeta function

ZX(u) satisfies the Riemann hypothesis if its real poles are of the form |u| = 1 or q−1

or possibly with |u| = q−
1
2 in the event that λ = ±2

√
q is an eigenvalue. The pole

u = q−1 must be simple. The complex poles are all forced to be on the circle of radius

q−
1
2 and centered at 0, so we need only check the real poles to determine if a graph

is Ramanujan or not.

Now that we know about the poles of the zeta function, we look at any symmetries

that may arise in the values. We have functional equations whenever X is (q + 1)-

regular. We state several now that were found by Stark and Terras [34], but we will

postpone the proof until later.

Corollary 2.4.8 (Bass; Stark and Terras). Let X be a (q + 1)-regular graph with
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n = |V |. Then, among others, we have the following functional equations for ZX(u):

1. ΛX(u) := (1 − u2)
n
2
−χ(X)(1 − q2u2)

n
2 ZX(u) = (−1)nΛX( 1

qu
).

2. ξX(u) := (1 + u)−χ(X)(1 − u)−χ(X)+n(1 − qu)nZX(u) = ξX( 1
qu

).

3. ΞX(u) := (1 − u2)−χ(X)(1 + qu2)nZX(u) = ΞX( 1
qu

).

We refer the reader to a proof of Corollary 5.4.3 for an example.

Taking a step back for a moment, we see that, when X is k-regular, we have all

of the properties that number theorists look for in a zeta function:

1. ZX(u) satisfies an Euler product expansion.

2. ZX(u) has a Riemann hypothesis which is sometimes true and sometimes not,

but we know explicitly when it is.

3. ZX(u) satisfies functional equations.

From a number theorist’s point of view, these will be the of the properties that we

look for in generalizing the Ihara-Selberg zeta function to hypergraphs. In the next

section, we will take a look at how well the Ihara-Selberg zeta function serves as a

graph invariant.

2.5 The Ihara-Selberg zeta function as graph in-

variant

In this section, we want to focus on a more graph theoretic question: if two graphs

X and Y have ZX(u) = ZY (u), what, if anything, can we say about the relationship

between the graphs X and Y ? It will turn out that the answer is quite a mixed

bag, but we will outline the results we know about here. These sorts of questions

have received a great deal of attention lately and some preliminary results can be
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found in [8, 10, 33]. From Corollary 2.3.6, it is immediate that X and Y have the

same zeta function if and only if the spectra of their T operators is the same. The

Perron–Frobenius operator T is defined on the oriented line graph, meaning we can’t

directly study the graphs from this statement. We hope to be able to address the

actual graph structure that is determined by having the same zeta function. First,

we need a new definition:

Definition 2.5.1 (Harary, King, Mowshowitz, and Read). Two graphs X and Y are

cospectral if their adjacency operators have the same spectrum; i.e., if spec(X) =

spec(Y ).

Suppose X and Y are both k-regular graphs; then, it turns out that having the

same Ihara-Selberg zeta function is equivalent to X and Y being cospectral. This

should not be surprising in light of Lemma 2.4.7 but is worth pointing out. In fact,

this result seems to have first been found by Aubi Mellein [26].

Theorem 2.5.2 (Mellein, 2001). Suppose X and Y are k-regular graphs. Then

ZX(u) = ZY (u) if and only if X and Y are cospectral.

We take a moment to recall the binomial coefficient notation from combinatorics.

For r, s ∈ Z≥0, we define
(

r

s

)

=
r!

(r − s)!s!
(2.4)

which is the number of ways to choose an ordered subset of size s from a set of r

elements. We also adopt that convention that if s < 0 or if r < s,
(

r
s

)

= 0. The

following relation is the rule of formation of Pascal’s triangle and will be useful to us:

Lemma 2.5.3 (Pascal’s formula). Let r, s ∈ Z, then

(

r

s

)

+

(

r

s − 1

)

=

(

r + 1

s

)

.
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Before proving the main result, we establish the following Lemma:

Lemma 2.5.4. Let q be a positive integer and let {λ1, · · · , λn} be a set of real num-

bers. Then

∏

λi

(1 − λiu + qu2) = 1 + c1u + c2u
2 + · · ·+ c2nu

2n.

If we let, for j ≤ n,

dj = (−1)j
∑

1≤i1<···<ij≤n

λi1λi2 . . . λij , (2.5)

then, for j ≤ n, we can explicitly write down the cj’s in terms of the dj’s. For future

calculations, we adopt the convention that d0 = 1 and d−m = 0 for m ∈ N. We have

cj =

[ j
2
]

∑

l=0

(

n − j + 2l

l

)

qldj−2l. (2.6)

Proof. We consider the coefficients found by multiplying out the polynomial
∏

λi

(1 −

λiu + qu2). The coefficient of uj is found from choosing l copies of qu2, where l runs

up to j
2
, choosing j − 2l factors −λiu, and copies of 1. For a given l, the contribution

to cj of the j−2l linear factors is dj−2l, and the contribution of the l quadratic factors

is ql
(

n−j+2l
l

)

. The lemma follows.

With this lemma in hand, we now prove Theorem 2.5.2:

Proof. This proof is similar to that given by Mellein [26]; although, some of the

details are different. Suppose G and H are k-regular graphs. We will first show,

by closely examining Theorem 2.4.1, that if they are cospectral, they have the same

Ihara-Selberg zeta functions.

Since G and H are cospectral, they must have the same number of vertices. Since

they are both k-regular, they must also have the same number of edges; hence, they
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have the same Euler Number χ. To show that ZG(u) = ZH(u), we need only show

that the parts which arise from the determinant expression are the same.

So we consider the expression det(I − uA + u2Q). When our graph is k-regular,

Q is a diagonal matrix with q = k − 1 in every entry on the diagonal. This lets us

rewrite:

det(I − uA + u2Q) = det(I − uA + qu2I).

Now since the identity matrix commutes with the adjacency matrix, we can si-

multaneously diagonalize A and I, allowing us to rewrite the determinant expression

as a product over the eigenvalues of the adjacency matrix:

det(I − uA + qu2I) =
∏

λi∈specA

(1 − λiu + qu2).

Hence when a graph is k-regular, the determinant expression is completely de-

termined by the number of vertices in the graph, the eigenvalues of the adjacency

operator, and k. This gives us ZG(u) = ZH(u).

We now suppose that G and H are both k-regular with ZG(u) = ZH(u). As

before, G and H must have the same Euler Number (the number of eigenvalues of

the adjacency operator is the number of vertices, so they have the same number of

vertices and thus edges), so their determinant expressions must be the same. We will

show that knowing det(I−uA(G)+qu2) is enough to determine exactly the spectrum

of G.

As before, we have

det(I − uA + qu2I) =
∏

λi∈specA

(1 − λiu + qu2);

however, Lemma 2.5.4 tells us explicitly what the coefficients must be in terms of the

eigenvalues. This means we have all of the numbers cj up to j = n. We recursively
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recover the numbers dj by noting that

d1 = c1

and

ds = cs −
[ s
2
]

∑

k=1

(

n − s + 2k

k

)

qkds−2k.

Now we notice that

(x − λ1)(x − λ2) . . . (x − λn) = xn + d1x
n−1 + d2x

n−2 + · · ·+ dn.

Since we can explicitly compute the dj ’s, we can actually write down the characteristic

polynomial of A(G). Its roots form the spectrum of A(G). Thus if two k-regular

graphs have the same Ihara-Selberg zeta function, they must be cospectral.

We should point out that this result actually follows from a theorem of Gregory

Quenell [32]. He focused on the set of closed paths of varying lengths and was able

to prove a similar statement. Before stating his result, we need a few definitions.

The universal cover of a k-regular graph G is the infinite k-regular tree, which we

denote Xk. We let Aut(Xk) be the group of automorphisms of Xk. Then the graph

G can be viewed as the quotient of Xk by a subgroup H of Aut(Xk) that acts freely

on the vertices of Xk. We write G = H \ Xk; then the vertices of G are the orbits

Hx of vertices in Xk, and Hx is adjacent to Hy if and only if each element of Hx

is adjacent to some element of Hy in Xk. With this framework in mind, we state

Quenell’s theorem:

Theorem 2.5.5 (Quenell). Let H \ Xk be an n-vertex, simple k-regular graph. For

each integer r ≥ 1, let

Pr =
∑

[hi]H⊂[tr]Aut(Xk)

L(CH(hi))
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Figure 2.6: Two cospectral graphs with different Ihara-Selberg zeta functions.

where [tr]Aut(Xk) is the Aut(Xk)-conjugacy class containing all length-r translations

in H and L(CH(hi)) denotes the length of a generator of the centralizer CH(hi) of hi

in H.

Then the spectrum of H \ Xk determines and is determined by the sequence

P1, P2, · · · , Pn.

Quenell’s proof relies heavily on covering space theory and spherical functions

on Xk. He then connects this theorem to the Ihara-Selberg zeta function with the

following remark:

Remark 2.5.6 (Quenell). Let G be a k-regular graph. Then u d
du

log ZG(u) is a

generating function for the numbers Pr.

From this remark and the fact that ZG(0) = 1, we can deduce Theorem 2.5.2.

In fact, his result is stronger because he only needs the first n coefficients of the

logarithmic derivative; whereas, we have required all of them.

We’re also interested in the more general case when X may not necessarily be a

regular graph. Unfortunately, we do not know of a nice formulation at the moment to

determine if two graphs have the same Ihara-Selberg zeta function or what it means

for two graphs to have the same Ihara-Selberg zeta function. We offer two examples

to illustrate the difficulties. In both cases, the graphs we used came from Willem

Haemers and Edward Spence’s article [15].

Example 2.5.7. Figure 2.6 gives an example of two graphs which are cospectral but

have different Ihara-Selberg zeta functions. If we denote by H1 the leftmost graph
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Figure 2.7: Two graphs with same laplacian spectrum but with different Ihara-Selberg
zeta functions.

and H2 the rightmost, we have:

Z−1
H2

(u) = −(−1 + u)2(1 + u)(1 + u + u2)(1 + u + u2 + u3 + u4)

× (−1 + u − u2 + 2u3 − 2u4 + 3u5 − 3u6 + 3u7),

and

Z−1
H1

(u) = −(−1 + u)2(1 + u)(1 + u + 2u2 + u3 + 2u4)(−1 + u3 + u5 + u6 + 2u7).

Example 2.5.8. Often, people will study the combinatorial laplacian ∆ = I + Q −

A instead of the adjacency operator. When two k-regular graphs are cospectral,

they also have the same laplacian spectrum. When two graphs are not k-regular,

it’s possible to have the same laplacian spectrum and not be cospectral. We might

expect that this is a better operator to study given the operators that appear in the

determinant expression of Bass’s factorization; however, we have the same problem

as the previous example when we consider this operator. Figure 2.7 is an example of

two graphs which have the same laplacian spectrum but have different Ihara-Selberg

zeta functions. We let H1 be the left graph and H2 the right; then

Z−1
H1

= (−1 + u)3(1 + u)2(1 + u + 2u2)(1 + u + 2u2 + 2u3 + 2u4 + 2u5 + 2u6)

× (−1 + u + 2u3 − 2u4 + 2u5 − 2u6 + 4u7),
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and

Z−1
H2

(u) = (−1 + u)3(1 + u)2(−1 + u − 2u2 + 4u3 − 3u4 + 5u5 − 2u6 + 4u7)

× (1 + 2u + 3u2 + 2u3 + 3u4 + 4u5 + 7u6 + 6u7 + 4u8).

In her Ph.D. dissertation, Debra Czarneski extended Mellein’s result to cover

biregular bipartite graphs (bipartite graphs where the degree of each vertex in an

independent set is the same as the degree of the other vertices in that set) [10]. Thus,

we can conclude that if two graphs X and Y are both k-regular, ZX(u) = ZY (u) if and

only if X and Y are cospectral. The conclusion is identical if X and Y are both (d, r)-

biregular, bipartite graphs. There doesn’t seem to be much progress on non-regular

cases. The k-regular case can use Bass’s determinant expression as a tool; while, the

biregular bipartite case uses Hashimoto’s expression, stated in Theorem 5.3.6 in an

identical way. Lacking this sort of tool, we are forced to look at the Perron–Frobenius

operator, which is more delicate.

2.5.1 The coefficients of the Ihara-Selberg zeta function

Setting aside the larger question of exactly what conditions will force non-isomorphic

graphs to have the same zeta function, we look at a more specific question: what

properties of a graph are encoded in the Ihara-Selberg zeta function? Yaim Cooper

has several preliminary results in this direction [8], but we would like to add a new

result here. This is a generalization of the proof Norman Biggs gives to show that

the adjacency operator determines the number of triangles in a graph [5].

Theorem 2.5.9. Let X be a graph with no loops or multiple edges and write

ZX(u)−1 = 1 + c1u + c2u
2 + c3u

3 + · · ·+ cmum.
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Then the coefficient c3 is the negative of twice the number of triangles in X.

Proof. We first note that the number of triangles in X is one half the number of

oriented triangles in Xo
L. This comes from the correspondence established in Lemma

2.3.5 and the observation that one triangle gives rise to two prime cycle classes because

direction of travel matters.

We construct Xo
L and then look at the Perron–Frobenius operator T . We consider

the characteristic polynomial

χ(T ; x) = det(xI − T ) = xn + d1x
n−1 + d2x

n−2 + d3x
n−3 + · · ·+ dn.

Then −d3 is the sum of the principal minors of T which have 3 rows and columns. We

consider all such possible minors. We first make a note about the edge relations that

may arise. Suppose e1 and e2 are oriented edges such that t(e1) = o(e2). Then, by

construction, t(e2) 6= o(e1). This means that if the i, j-entry of T is 1, the j, i-entry

must be 0. Moreover the diagonal entries are zero since t(ei) 6= o(ei) (there are no

loops) as well. Up to reordering the edges, the only non-trivial principal minors with

three rows and columns that may arise are:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0

0 0 1

1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0

0 0 1

0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0

0 0 0

0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Of these three, the determinants of the last two are trivial, and the determinant of

the first is 1. However, the first principal minor exactly corresponds to the triangle

given by {e1, e2, e3} where t(e1) = o(e2), t(e2) = o(e3), and t(e3) = o(e1). One such

minor will appear for each oriented triangle in Xo
L.

The coefficient d3 is the same as the coefficient c3 given by sending x to 1/λ and

then rewriting 1/λ = u in the expression det(I − uT ).

38



We feel that these sorts of questions can be quite important as they let us take

full advantage of the number theory toolkit to try to solve problems in graph theory.

Hopefully, we will be able to give exact results to determine when two graphs have

the same Ihara-Selberg zeta function in the future. As Quenell’s theorem shows, this

has an immediate link to paths on graphs and can then be pushed towards other

questions of that sort.

We will now leave the graph setting and turn towards hypergraphs. We will define

two different zeta functions that will generalize the Ihara-Selberg zeta function on a

graph. In both cases, they will give the Ihara-Selberg zeta function if we actually

start with a graph. We will show many of the same results as in the graph case

but as applies particularly to hypergraphs. We will also show that our second zeta

function is a non-trivial generalization and will be able to produce rational functions

that graphs cannot.
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Chapter 3

Hypergraphs

Before looking at the zeta functions, we review some definitions and results about

hypergraphs. For the most part, results cited in this section are taken from papers by

Keqin Feng and Wen-Ch’ing Winnie Li as well as Li and Patrick Solé [12, 23]. Two

excellent books that review hypergraph theory are written by Claude Berge [3, 4].

3.1 What is a hypergraph?

Definition 3.1.1 (Berge). A hypergraph H is a set of hypervertices V (H) and a mul-

tiset of hyperedges E(H) such that each hyperedge is a multiset consisting of elements

of V (H) and the union of all the hyperedges is V (H). We note that a hypervertex

may be repeated in the same hyperedge. We also allow for hyperedges to repeat. A

hypervertex v is incident to a hyperedge e if v ∈ e. We call the cardinality of a hyper-

edge e the order of the hyperedge and denote it |e|. We require that |e| > 1 for each

hyperedge e. We restrict our attention to the case where the number of hypervertices,

the number of hyperedges, and the order of each hyperedge are all finite.

Bipartite graphs play an important role in the study of hypergraphs, and we define

them here. A bipartite graph B is a graph whose vertex set V can be partitioned into
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•v1

•v2

•v3

•v4

e1
e2

e3

e4

•v1 •v2 •v3 •v4

•e1
•e2

•e3
•e4

incidence

relation

Figure 3.1: A hypergraph with V = {v1, v2, v3, v4} and hyperedges given by e1 =
{v1, v2, v3}, e2 = {v1, v4}, e3 = {v2, v4}, and e4 = {v3, v4}. On the right is the associ-
ated bipartite graph formed by the incident relation. We see that the vertex e1 has
degree 3, indicating that e1 is a hyperedge of order 3.

two subsets V1 and V2 such that every edge of B connects a vertex from V1 to one

from V2. The incidence relation allows us to associate with H a bipartite graph B

in the following way: the vertices of B are V (H) and E(H). Vertices v ∈ V (H) and

e ∈ E(H) are adjacent in B if v is incident to e in H. This associated bipartite graph

is a very important tool in the general study of hypergraphs and will be quite useful

to us later. See Figure 3.1 for an example of a hypergraph and its associated bipartite

graph.

Notation 1. Given a hypergraph H, we will denote by BH its associated bipartite

graph.

For now, we can use the associated bipartite graph to generalize to hypergraphs

the adjacency matrix. We associate to H an adjacency matrix A(H) whose rows and

columns are parameterized by V (H). Then the ij-entry of A(H) is the number of

paths in B from vi to vj of length 2 with no backtracking. This last condition does

allow a diagonal entry to be nonzero if a vertex appears more than once in some
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hyperedge since there will be a multiple edge in the bipartite graph.

Remark 3.1.2. Of course, we might also define the ij-entry to be the number of

hyperedges which contain both vi and vj with appropriate compensation for vi or vj

appearing more than once in a hyperedge. This second definition is equivalent to the

first since every path of length 2 with no backtracking from vi to vj goes through a

vertex in BH given by a hyperedge. Each path corresponds to vi and vj being in the

hyperedge in the middle of the path. The backtracking condition serves to keep us

from saying vi is adjacent to vi when vi appears only once in a hyperedge.

3.2 The spectrum of a hypergraph

As with graphs, we will be interested in studying the spectrum of the adjacency

operator on hypergraphs. To do this, it’s sometimes useful to actually change from a

problem on hypergraphs into a problem on graphs. For an arbitrary hypergraph H,

the adjacency matrix will be a symmetric |V (H)| × |V (H)| matrix with non-negative

integer entries. By Remark 1.1.5, we can construct a graph GH with V (GH) labeled the

same as V (H) and with A(GH) = A(H). This construction is actually very intuitive:

for each hyperedge e, we construct an |e|-clique—a clique on a set of vertices is formed

when every pair of vertices in the set is an edge—on the vertices of e by adding an

edge joining v and w for each pair of hypervertices v, w ∈ e. We give an example of

this in Figure 3.2.

Notation 2. Given a hypergraph H, we denote by GH the graph with V = V (H) and

the same adjacency matrix as H.

Once we realize that studying the adjacency operator on a hypergraph is the same

as studying it on a graph, we can get a lot of immediate results. We know immediately

that the eigenvalues must be real and that they are bounded by the maximum degree

of vertices considered in GH. Given a hypergraph H and hypervertex v, we would
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Figure 3.2: Going from a hypergraph to a graph on the same vertex set and with the
same adjacency matrix

like to know what the degree of v is when considered as a vertex of GH. We compute

this explicitly as d(v) =
∑

v∈ei

(|ei| − 1). We let ∆ be the maximum degree of vertices

in GH; then, as before, we have

∆ ≥ λ1 ≥ · · · ≥ λ|V (H)| ≥ −∆.

Before we look at the gap between the largest eigenvalue and the second largest,

we need the proper notions of “connected” and “regular.” In the spectrum, λ1 will be

explicit as it was with regular graphs, and we will be able to look for the next largest

eigenvalue as before.

Definition 3.2.1. A hypergraph H is connected if GH is connected as a graph.

Definition 3.2.2 (Li and Solé). A hypergraph H is (d, r)-regular if:

1. Every hypervertex is incident to exactly d hyperedges, and

2. Every hyperedge contains exactly r hypervertices.
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Suppose H is a (d, r)-regular hypergraph; then, GH actually has a very special

structure. Every vertex of GH is an element of exactly d r-cliques. In this case, the

degree of each vertex in GH is k = d(r − 1), and λ1 = d(r − 1). By viewing (d, r)-

regular hypergraphs as a special class of k regular graphs, Feng and Li establish the

following result on graphs which gives us an Alon–Boppana-type corollary for the

second eigenvalue of regular hypergraphs [12]:

Theorem 3.2.3 (Feng and Li). Let G be a k-regular graph. Suppose that there is a

constant g such that for any pair of adjacent vertices in G, there are at least g vertices

of G adjacent to both vertices. If the diameter of G is ≥ 2l + 2 ≥ 4 for some l ∈ Z,

then

λ2(G) > g + 2
√

q − 2
√

q − 1

l
,

where q = k − g − 1.

We will give a complete proof as it illustrates some important techniques that

Spectral Graph Theory has taken from Spectral Geometry. The proof is a modifica-

tion of a proof by Alon Nilli for Theorem 1.1.7 [31].

Definition 3.2.4 (Feng and Li). Let G be a graph. The combinatorial laplacian L

is a linear operator on C(V ) given by:

(Lf)(v) =
∑

u
v∼u

(f(v) − f(u)) . (3.1)

If G is a k-regular graph, L can be written L = kI − A. Then L is symmetric and

has eigenvalues given by ηi = k − λi where the λi’s are the eigenvalues of A.

There is a natural inner product that we associate with C(V ), given by

〈f, g〉 =
∑

v∈V

f(v)g(v).
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Proposition 3.2.5. The laplacian operator L on a k-regular graph G is self-adjoint

with respect to the above inner product.

Proof. Since G is k-regular, we use the expression L = kI − A. Let f, g ∈ C(V ).

Then

〈Lf, g〉 = k〈f, g〉 − 〈Af, g〉

= k
∑

x∈V (G)

f(x)g(x) −
∑

x∈V (G)

g(x)
∑

y∈V (G)
{x,y}∈E(G)

f(y)

=
∑

{x,y}∈E(G)

(f(x)g(x) − 2g(x)f(y) + f(y)g(y))

= 〈f,Lg〉.

The second to last equality comes from changing our sum from vertices to a sum over

edges. We have to include both vertices in the edge, which is why we get the term

f(x)g(x) as well as f(y)g(y). The symmetry in the third line lets us put everything

back together with the laplacian operator on the other side of the inner product.

Since L is self-adjoint with respect to the inner product, there exists an orthog-

onal basis of elements of C(V ) which are eigenfunctions of L [13]. When the graph

is k-regular, the constant function f0 ≡ 1, called the harmonic eigenfunction, is an

eigenfunction with eigenvalue η1 = 0. Then, the other eigenvalues of L are positive

(the dimension of the 0-eigenspace is 1 if G is connected) with eigenfunctions perpen-

dicular to f0. By the variational characterization of the eigenvalues in terms of the

Rayleigh quotient of L, we can realize the second smallest eigenvalue η2 = k − λ2 as

η2 = min
f 6=0,f∈C(V )

〈f,f0〉=0

〈Lf, f〉
〈f, f〉 . (3.2)

Our strategy to prove Theorem 3.2.3 will be to pick a suitable test function f to

use in (3.2) to get an upper bound on η2, which will become a lower bound on λ2.
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Proof. We first note that it’s sufficient to consider only connected graphs. If G is not

connected and is k-regular, we have λ2 = k and the theorem holds trivially. Thus let

G be a connected k-regular graph with diameter ≥ 2l + 2 ≥ 4. Suppose that there

is a constant integer g such that for any pair of adjacent vertices in G, there are at

least g vertices of G adjacent to both vertices. By our assumption on the diameter of

G, there exist two vertices u and v such that dist(u, v) ≥ 2l + 2 ≥ 4. We define some

neighborhoods around these vertices: for i ≥ 0, let

Ui = {x ∈ V (G)|dist(x, u) = i}, and

Vi = {x ∈ V (G)|dist(x, v) = i}.

By our choice of u and v, U0, · · · , Ul, V0, · · · , Vl are pairwise disjoint. In addition, no

vertex in U = ∪l
i=1Ui is adjacent to any vertex in V = ∪l

i=0Vi. Our assumptions on

G allow us to estimate the size of each of these sets. We have |U0| = |V0| = 1 and

|U1| = |V1| = k. For each vertex x ∈ Ui with i ≥ 1, at least 1 of its k neighbors

lies in Ui−1. Denote one such vertex by y. By our assumption, there are at least g

vertices adjacent to both x and y; thus, at least g of x’s neighbors lie in Ui and Ui−1.

This leaves at most q = k − g − 1 neighbors of x in Ui+1. This means we can bound

the size of Ui+1 by that of Ui via |Ui+1| ≤ q|Ui| for i = 1, · · · , l − 1. Similarly we

have |Vi+1| ≤ q|Vi| for i = 1, · · · , l − 1. We are now ready to define our test function

f ∈ C(V ) to use in the Rayleigh quotient:

f(x) =















































































a if x ∈ U0 ∪ U1,

aq−(i−1)/2 if x ∈ Ui, 2 ≤ i ≤ l,

−b if x ∈ V0 ∪ V1,

−bq−(i−1)/2 if x ∈ Vi, 2 ≤ i ≤ l,

0 otherwise.
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Here, q = k − g − 1 as before, and a, b are positive real numbers chosen so that

〈f, f0〉 = 0.

We can now begin to estimate the terms in the Rayleigh quotient. We first look

at 〈f, f〉:

〈f, f〉 =
∑

x∈X

f(x)2

=
∑

x∈U

f(x)2 +
∑

x∈V

f(x)2

since f is 0 outside of U and V . We consider each sum separately:

A1 =
∑

x∈U

f(x)2

= a2

(

1 +
l
∑

i=1

|Ui|q−(i−1)

)

≥ a2

(

1 + l
|Ul|
ql−1

)

.

The last inequality follows by repeated application of the inequality |Ui+1| ≤ q|Ui|

for i = 1, · · · , l − 1. We can also make a similar statement for B1 =
∑

x∈V
f(x)2 ≥

b2(1 + l |Vl|
ql−1 ).

Now we estimate the numerator 〈Lf, f〉. Performing the same calculation as in

the proof of Proposition 3.2.5, we have:

〈Lf, f〉 = k〈f, f〉 − 〈Af, f〉

= k
∑

x∈V (G)

f(x)2 −
∑

x∈V (G)

f(x)
∑

y∈V (G)
{y,x}∈E(G)

f(y)

=
∑

{x,y}∈E(G)

(

f(x)2 − 2f(x)f(y) + f(y)2
)

=
∑

{x,y}∈E(G)

(f(x) − f(y))2.
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We now use the fact that no vertex in U is adjacent to a vertex in V to split this into

two sums, one over edges with an endpoint in U and one over edges with an endpoint

in V . We write 〈Lf, f〉 = A2 + B2 with

A2 =
∑

{x,y}∈E(G)
x∈U

(f(x) − f(y))2.

We define B2 in the same way by replacing U with V . We now use our definition of

the test function f and the fact that for each x ∈ Ui, x has at most q neighbors in

Ui+1 to approximate A2. Since any edge incident to the vertex in U0 is incident to a

vertex in U1, we can begin our sum at U1:

A2 ≤
l−1
∑

i=1

|Ui|q(q−(i−1)/2 − q−i/2)2a2 + |Ul|qq−(l−1)a2

= (
√

q − 1)2(|U1| + |U2|q−1 + · · · + |Ul−1|q−(l−2) + |Ul|q−(l−1))a2

+ a2(2
√

q − 1)|Ul|q−(l−1)

≤ (
√

q − 1)2(A1 − a2) + (2
√

q − 1)
A1 − a2

l

<

(

1 + q − 2
√

q +
2
√

q − 1

l

)

A1.

Similarly, we can estimate B2:

B2 <

(

1 + q − 2
√

q +
2
√

q − 1

l

)

B1.

We can now put everything together to estimate η2 with the Rayleigh quotient:

k − λ2 = η2 ≤
A2 + B2

A1 + B1

<

(

1 + q − 2
√

q +
2
√

q − 1

l

)

A1 + B1

A1 + B1

= 1 + q − 2
√

q +
2
√

q − 1

l
.
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This gives us an estimate for the second eigenvalue of the adjacency operator

λ2 > g + 2
√

q − 2
√

q − 1

l
,

as desired.

Before we return to the hypergraph setting, we make one short note about the

diameter of a graph as the number of vertices grows large. If we let D be the diameter

of a k-regular graph G. Then

|V (G)| ≤ 1 + k + k(k − 1) + · · · + k(k − 1)D−1 < 1 + k + · · ·+ kD,

so

D ≥ log |V (G)|
log k

− O(1).

Hence, as the number of vertices grows large, D will tend to infinity.

Theorem 3.2.3 gives a strong statement about graphs, so we need to connect it

back to hypergraphs. Suppose H is a (d, r)-regular hypergraph. Then for every pair

of adjacent vertices in GH, there are at least r − 2 vertices adjacent to both vertices

since two vertices are adjacent if and only if they both lie in the same r-clique. Thus,

we take g = r − 2, which gives q = k − (r − 1) = (d − 1)(r − 1). Combining these

two numbers with the statement about the diameter growing large as the number of

vertices grows large, we get the corollary we were interested in:

Corollary 3.2.6 (Feng and Li). Let {Hm} be a family of connected (d, r)-regular

hypergraphs with |V (Hm)| → ∞ as m → ∞. Then

lim inf
m→∞

λ2(Hm) ≥ r − 2 + 2
√

q,

where k = d(r − 1) and q = (d − 1)(r − 1) = k − (r − 1).
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This is the key ingredient in their definition of Ramanujan hypergraphs; how-

ever, the associated bipartite graph also has an equally important role to play in the

structure of the eigenvalues of H. We will focus on this connection in the next section.

3.3 The associated bipartite graph

We now turn our attention to the relations between H and its associated bipartite

graph BH. BH is a bipartite graph with vertex sets coming from V (H) and E(H).

This suggests that, if we are given an arbitrary bipartite graph, we’d have two ways to

construct a hypergraph from it. We could pick one of the independent sets to be the

hypervertices and the other to characterize the incidence relation, or we could switch

it and pick the other set initially as our hypervertices. With this idea, we construct

the dual hypergraph H∗ of H. We begin with H and construct BH. Then, we take

BH and construct a new hypergraph with hypervertices coming from the vertex set

of BH parameterized by E(H) and hyperedges defined from the vertex set of BH

parameterized by V (H). Figure 3.3 gives an example of a hypergraph in addition to

its associated bipartite graph and dual hypergraph.

We will be particularly interested in the special case of regular hypergraphs. Sup-

pose H is (d, r)-regular, then BH is a (d, r)-biregular bipartite graph. When we con-

struct H∗, we finish with a (r, d)-regular hypergraph. We see in [23] that, for regular

hypergraphs, the adjacency operators of these three structures are intimately related:

A(BH) =









0 M

tM 0









, (3.3)

A(BH)2 =









M tM 0

0 tMM









=









A(H) + dIV 0

0 A(H∗) + rIE









,

where M = M(V, E) is the incidence matrix of H, and IV and IE are identity matrices
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Figure 3.3: Two hypergraphs with the same associated bipartite graph. These hy-
pergraphs are duals of each other.

with rows and columns parameterized by V and E respectively. The identity matrices

appear in A(B)2 since the adjacency operators of H and H∗ are defined by looking

at paths of length 2 in the respective structure with no backtracking. Introducing

the identity matrix adds the paths with backtracking back in so that we get the full

picture.

Let P (x), P ∗(x), and Q(x) denote the characteristic polynomials of A(H), A(H∗),

and A(B)2 respectively. Then these polynomials are related as follows:

Q(x) = P (x − d)P ∗(x − r). (3.4)

In addition, the polynomials P (x) and P ∗(x) satisfy the following relation, given in

[9]:

x|V |P ∗(x − r) = x|E|P (x − d). (3.5)

This gives a very explicit connection between the spectrum of H and H∗. Since
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Q(x) is the characteristic polynomial of A(B)2, it has non-negative roots. By (3.4),

this forces the eigenvalues of H and H∗ to be at least −d and −r respectively. Further-

more, the eigenvalues of B are d more than the square roots of the eigenvalues of H

and r more than the eigenvalues of H∗. One immediate consequence of these relations

is that the spectrum of a (d, r)-biregular bipartite graph is contained in the interval

[
√

dr,−
√

dr] since d(r−1) is the largest eigenvalue of a (d, r)-regular hypergraph. In

fact, λ1(B) =
√

dr and λ|V (B)| = −
√

dr whenever B is (d, r)-biregular.

When d and r are not equal, comparing the powers of x in both sides of (3.5)

gives the obvious eigenvalue −d of H with multiplicity |V (H)| − |E(H)| or −r of H∗

with multiplicity |E(H) − |V (H)|, depending on whether d < r or r < d. In general,

once we know the spectrum of H, H∗, or B, we get a great many results about the

spectra of the other two structures.

As an application of (3.4), we rewrite Corollary 3.2.6 for biregular, bipartite

graphs. This result tells us how far the second eigenvalue can be from
√

dr:

Corollary 3.3.1 (Li and Solé). Let {Bm} be a family of connected (d, r)-biregular

bipartite graphs with |V (Bm)| → ∞ as m → ∞. Then

lim inf
m→∞

λ2(B) ≥
√

d − 1 +
√

r − 1.

Proof. We begin by using Bm to construct a (d, r)-regular hypergraph H and its dual

H∗. We let Q(x), P (x), and P ∗(x) be the characteristic polynomials of A(Bm), A(H),

and A(H∗) respectively. Now, we investigate the critical case when H has second eigen-

value λ2(H) = r−2+2
√

(d − 1)(r − 1). In this case, P
(

r − 2 + 2
√

(d − 1)(r − 1)
)

=

0, which implies that Q
(

d + r − 2 + 2
√

(d − 1)(r − 1)
)

= 0 by (3.4). We simplify
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this:

d + r − 2 + 2
√

(d − 1)(r − 1) = (r − 1) + (d − 1) + 2
√

(d − 1)(r − 1)

=
(√

r − 1 +
√

d − 1
)2

.

Hence, if H has eigenvalue r − 2 + 2
√

(d − 1)(r − 1), Bm must have eigenvalues λ =

±
(√

r − 1 +
√

d − 1
)

. The corollary now follows from the observation that if we look

at α > r − 2 + 2
√

(d − 1)(r − 1), the corresponding root α + d of Q(x) is larger, and

thus the absolute value of the corresponding eigenvalues of Bm are larger.

We see from the computation in the above proof that the eigenvalues of biregular

bipartite graphs are symmetrically arranged about 0. Zero also can occur as an

eigenvalue: in particular, zeros in the spectrum correspond to the obvious eigenvalues

of a hypergraph; although, zero may appear with greater multiplicity than the obvious

eigenvalues do. In practice, we will often consider the squares of the eigenvalues since

this gives us the same information but makes the eigenvalues a bit easier to work

with.

We can now make the appropriate generalizations of Ramanujan hypergraph and

bipartite graph. Our definition of a Ramanujan biregular bipartite graph is the same as

that given by Hashimoto [16], and the definition for a Ramanujan regular hypergraph

agrees with Li and Solé’s [23]:

Definition 3.3.2 (Hashimoto; Li and Solé). We make the following definitions:

1. Let X be a finite, connected (d, r)-biregular bipartite graph. We say X is a

Ramanujan bipartite graph if

|λ2 − (d − 1) − (r − 1)| ≤ 2
√

(d − 1)(r − 1), (3.6)

for all λ ∈ Spec(X) such that λ2 6= dr.
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2. Let H be a finite, connected (d, r)-regular hypergraph. We say H is a Ramanujan

hypergraph if

|λ − r + 2| ≤ 2
√

(d − 1)(r − 1), (3.7)

for all non-obvious eigenvalues λ ∈ Spec(H) such that λ 6= d(r − 1).

Remark 3.3.3. This definition can be troublesome. For instance, if d = 2 and r = 10,

then a Ramanujan (d, r)-regular hypergraph could have no eigenvalues of absolute

value smaller than 2, which seems to defeat the goal of having small eigenvalues. We

refer the reader to [25] for some explicit constructions of Ramanujan hypergraphs;

although, the r considered is never larger than 4.

Remark 3.3.4. Suppose that X is a finite, connected (k, k)-biregular bipartite graph.

Then X is a k-regular graph, and we see that the definition of Ramanujan given here

corresponds to the definition given in Definition 1.1.8. Similarly, if H is a (d, 2)-regular

hypergraph, H is just a d-regular graph, and our definition of Ramanujan Hypergraph

agrees with the graph definition.

Proposition 3.3.5 (Li and Solé). Suppose H is a finite, connected (d, r)-regular

hypergraph. Then H is a Ramanujan hypergraph if and only if BH is a Ramanujan

bipartite graph.

Proof. This is a direct application of (3.4).

These are the main results and definitions we will need for the spectral theory on

hypergraphs. We now turn our attention to the generalizations of the Ihara-Selberg

zeta function to hypergraphs.
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Chapter 4

The “naive” generalization

In this chapter, we will look at what is possibly the more “naive” zeta function. We

will see that it doesn’t encapsulate the Ramanujan condition in a nice way; however,

it will serve to identify isospectral (d, r)-regular hypergraphs. The motivation that

leads to this definition is simple and has been profitable in other areas of study for

hypergraphs and graphs. We will try to encapsulate the idea that a (d, r)-regular

hypergraph is, in fact, a special case of a d(r − 1)-regular graph.

The most critical part of generalizing the Ihara-Selberg zeta function is decid-

ing what exactly we mean by a “prime cycle.” For graphs, we had the notions of

“backtracking”, “tails”, and an equivalence relation. All of these things need to be

appropriately defined for hypergraphs. We will focus mainly on different generaliza-

tions of “backtracking” and see that it can lead to drastically different results. In this

chapter, we take the “weakest” possible generalization of backtracking and see where

it leads.

4.1 Paths and the zeta function

We let H be a connected hypergraph. We begin with a closed path: A closed path in

H is a sequence c = (v1, e1, v2, e2, · · · , vk, ek, v1) such that vi ∈ ei−1, ei for i ∈ Z/kZ.

55



Note that this implies that v1 ∈ ek so that this path really is “closed.”

We say c has hypervertex backtracking if there is a subsequence of c of the form

(vi, ei, vi+1, ei, vi). Intuitively, this means that at some point we leave a hypervertex

via a hyperedge e and then take that same hyperedge directly back to the hypervertex.

It is permissible to return immediately to the hypervertex as long as you use a different

hyperedge. It is also permissible to reuse the same hyperedge immediately as long as

you go to a different hypervertex. This will turn out to be the weakest generalization

of backtracking that we examine. We now make the same definitions that we used

for graphs.

We denote by cm the m-multiple of c formed by going around the closed path m

times. Then, c is tail-less if c2 does not have hypervertex backtracking. We call c a

closed geodesic if c has no hypervertex backtracking and is tail-less. In addition, if c

is not the non-trivial m-multiple of some other closed geodesic b, we say that c is a

primitive geodesic. As before, we denote by |c|, the number of hyperedges in c, which

we call the length of c.

Now that we have the definitions to give us a primitive geodesic, we need to impose

an equivalence relation to obtain prime cycles. We use the same equivalence relation

that worked for graphs. Namely, two primitive geodesics are equivalent if one is a

cyclic permutation of the other. We call the equivalence class [c] a prime cycle. To

maintain clarity, we gather these definitions into one set of Path Criteria:

Path Criteria 2. Let H be a hypergraph. Then the prime cycles on H satisfy Path

Criteria 2 if:

1. A closed geodesic c is a closed path with no hypervertex backtracking or tails.

2. A closed geodesic is primitive if it is not bm for some other geodesic b and

integer m ≥ 2.

3. A prime cycle c is a representative of the equivalence class [c] of primitive
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Figure 4.1: A legal path in a hyperedge of order 4 and the corresponding legal path
in a 4-clique on the same vertices. The correspondence goes both ways.

geodesics, identified by cyclic permutation.

We define the generalization of the Ihara-Selberg zeta function that arises from

Path Criteria 2 as follows:

Definition 4.1.1. Let H be a finite, connected hypergraph. Let P be the set of prime

cycles in H defined by Path Criteria 2. Then the naive zeta function of H is given,

for sufficiently small u ∈ C, by

ZH(u) =
∏

p∈P

(

1 − u|p|
)−1

. (4.1)

We use the word “naive” because we’ve imposed a very weak backtracking con-

dition on the prime cycles. If we think about a single hyperedge, we realize that the

only thing that matters is not returning to the same hypervertex via the hyperedge

you just used. If we imagine replacing the hyperedge e = {v1, · · · , vk} with a clique

on {v1, · · · , vk}, we see that not backtracking in the hyperedge is equivalent to not

backtracking – in the graph sense – in the clique. Indeed, any legal move you could

make in the clique, you can make in the hyperedge. We see an example of this in

Figure 4.1. This leads us to our next proposition:

Proposition 4.1.2. Let H be a hypergraph and GH the graph associated with it defined

earlier. Then there is a one-to-one correspondence between prime cycles of length l
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that satisfy Path Criteria 2 in H and prime cycles of length l that satisfy Path Criteria

1 in GH.

Proof. Let H be a hypergraph and GH be the graph formed by taking every hyperedge

and replacing it with a clique on the vertices of the hyperedge. This is the graph

defined above. We assume all discussion of geodesics is referring to the Path Criteria

stated in the proposition.

For an edge e ∈ E(GH), we denote by ê the hyperedge in E(H) that gave rise to

e. For an edge ê ∈ E(H) with v, w ∈ ê, we denote by {v, w}ê, the edge in GH that

comes from ê and joins v and w.

Now suppose {v1, e1, v2, e2, · · · , vk, ek, v1} is a primitive geodesic in GH. Then

we claim that {v1, ê1, v2, ê2, · · · , vk, êk, v1} is a primitive geodesic in H. We suppose

that {v1, ê1, v2, ê2, · · · , vk, êk, v1} has hypervertex backtracking. Then there is some

subsequence of the form {vi, êi, vi+1, êi, vi}. In GH, this subsequence corresponds

to {vi, ei, vi+1, ei+1, vi}. By our construction, we have ei = {vi, vi+1}êi
, and ei+1 =

{vi+1, vi}êi
. This means ei = ei+1 and we actually have backtracking in the graph,

but this is a contradiction. A similar argument rules out the possibility of a tail, so

{v1, ê1, v2, ê2, · · · , vk, êk, v1} is a primitive geodesic in H.

Now suppose {v1, ê1, v2, ê2, · · · , vk, êk, v1} is a primitive geodesic in H. Then we

claim that {v1, {v1, v2}ê1, v2, · · · , vk, {vk, v1}êk
, v1} is a primitive geodesic in GH of the

same length. The argument is the same as the one above, and we leave it to the

reader to complete.

This correspondence means that the naive zeta function for H is exactly the Ihara-

Selberg zeta function of GH. In particular, this means that if H is actually a graph,

we would get the same function as the Ihara-Selberg zeta function. We can rewrite

Theorem 2.4.1 for an arbitrary hypergraph:

Theorem 4.1.3. Let H be a finite, connected hypergraph with adjacency operator A.

58



Let I be the identity operator on C(V ), and define an operator Q̃ on C(V ) by

(Q̃f)(v) =







∑

e∈E
v∈E

(|e| − 1) − 1





 f(v).

Then,

ZH(u) = ZGH
(u) = (1 − u2)χ(H) det(I − uA + u2Q̃)−1

where

χ(H) = χ(GH) = |V | − |E(GH)| = |V | −
∑

e∈E

(

|e|
2

)

is the Euler number of GH.

Proof. We have ZH(u) = ZGH
(u) by Proposition 4.1.2. The main expression is exactly

Theorem 2.4.1, so we need only show that the Euler number and operators match the

corresponding Euler number and operators on GH.

We begin with the Euler number χ(GH). For a given hyperedge e ∈ E(H), e

induces exactly
(

|e|
2

)

edges in GH because we form a clique on |e| vertices. This

establishes that the definition given for χ(H) is what is needed for Bass’s Theorem.

GH was constructed explicitly to have the same adjacency operator as H, so we

need only confirm that the operator Q̃ does the correct thing. For a given hypervertex

v in a hyperedge e, v is adjacent to the other |e| − 1 hypervertices in e when we pass

to GH. This means that the degree of v is the sum of |e|−1 over all hyperedges which

contain v. We then realize the Q operator on GH by subtracting one from the degree

before multiplying by f(v).

In the particular case that H is (d, r)-regular, then GH is a d(r−1)-regular graph,

so we can formulate a reasonable Riemann hypothesis for regular hypergraphs, using

the one for graphs. In this case, Q̃ is a diagonal matrix with d(r − 1) − 1, which is

the degree of each vertex in GH minus 1, in each diagonal entry. We now give the

corresponding Riemann hypothesis for ZH.
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Definition 4.1.4. Suppose H is a (d, r)-regular hypergraph. Let q̃ = d(r − 1) − 1.

Then ZH(q̃−s) satisfies the Riemann Hypothesis iff for

Re(s) ∈ (0, 1), Z−1
X (q−s) = 0 =⇒ Re(s) =

1

2
.

Unfortunately, the relation between the Riemann hypothesis and the Ramanujan

condition is not as strong as before. The key issue is that if the underlying graph

GH is Ramanujan, it does not necessarily mean that H is Ramanujan. The problem

comes when we examine the eigenvalues which are less than zero. Let us suppose

that GH is a d(r − 1)-regular Ramanujan graph. This means that any non-trivial

eigenvalue λ ∈ Spec(GH) satisfies

−2
√

d(r − 1) − 1 ≤ λ. (4.2)

However, if we want H to be a Ramanujan (d, r)-regular hypergraph, we would need

for λ to satisfy

r − 2 − 2
√

(d − 1)(r − 1) ≤ λ. (4.3)

If we are just given the information in (4.2), we cannot conclude that the condition

in (4.3) is met, as can be quickly seen by taking the values r = 5 and d = 4. We

should also point out that Equation (3.4) implies that

−d ≤ λ;

however, this is still not sufficient information to give us the bound in (4.3). If we were

only to require that ZH satisfy the Riemann hypothesis, we would only know that

GH is a Ramanujan graph, which is not enough to force H to satisfy the appropriate

eigenvalue bounds.

This does not mean that we cannot obtain any spectral information from this zeta
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function. If H is Ramanujan, we can use Theorem 4.1.3 to identify where poles can

appear.

Proposition 4.1.5. Suppose H is a finite, connected (d, r)-regular Ramanujan hy-

pergraph. Let q̃ = d(r − 1) − 1, and let i =
√
−1. Then

1. ZH(u) has poles at u = ±1 corresponding to the factor (1−u2)χ(GH) of the zeta

function.

2. ZH(u) has an additional pole at u = 1 and a simple pole at u = 1
q̃

corresponding

to the eigenvalue λ = d(r − 1).

3. If d < r, ZH(u) has poles at

u =
−d ± i

√
4q̃ − d2

2q̃

with density 1 − d/r corresponding to the obvious eigenvalues of H.

4. ZH(u) has poles on the circle

|u| =
1

q̃1/2
with Re(u) < 0 and |Im(u)| ≥

√

4q̃ − (r − 2 − 2
√

(d − 1)(r − 1))2

2q̃

corresponding to eigenvalues which satisfy

r − 2 − 2
√

(d − 1)(r − 1) ≤ λ < 0.

5. ZH(u) has poles on the circle |u| = 1
q̃1/2 with Re(u) ≥ 0, corresponding to

eigenvalues which satisfy

0 ≤ λ ≤ 2
√

q̃.
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6. ZH(u) has poles on the real axis in the interval

[
1

q̃1/2
,
(r − 2 + 2

√

(d − 1)(r − 1)) +

√

(r − 2 + 2
√

(d − 1)(r − 1))2 − 4q̃

2q̃
]

corresponding to eigenvalues which satisfy

2
√

q̃ ≤ λ ≤ r − 2 + 2
√

(d − 1)(r − 1).

Conversely if H is a finite, connected (d, r)-regular hypergraph, H is Ramanujan if

the poles of ZH(u) fall appropriately in the given regions.

Proof. Suppose H is a (d, r)-regular hypergraph, then all of the above conditions are

a consequence of the expression

ZH(u) = (1 − u2)χ(H)
∏

λ∈Spec(H)

(

1 − λu + q̃u2
)

,

and the quadratic formula for the polynomial

f(u) = q̃u2 − λu + 1.

We make a few remarks and leave the bulk of the proof to the reader. It is

spiritually identical to the proof of Corollary 2.4.3.

1. Statements 1 and 2 follow immediately from Bass’s expression and by writing

the zeta function as a product over eigenvalues.

2. Statement 3 considers the obvious eigenvalues for hypergraphs. When deciding

if the poles determine the Ramanujan condition, it is important that the multiplicity

of the described pole be correct.

3. Statement 4 has the condition on the imaginary part of the poles on the left
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half circle to rule out eigenvalues in the range

−2
√

q̃ ≤ λ < r − 2 − 2
√

(d − 1)(r − 1).

If r = 2, we see that this condition is trivial and we can have any pole on the left half

circle, just as before with graphs.

4. Statement 5 is clear from Corollary 2.4.3.

5. Statement 6 locates the poles that occur from eigenvalues larger than the graph

Ramanujan condition allows but still within the hypergraph Ramanujan condition.

The left endpoint of the interval is 1
q̃1/2 because

λ ≥
√

λ2 − 4q̃,

so the negative branches of the square root can never push us too far to the left.

Hence, we do have a complete characterization of the Ramanujan condition in

terms of the poles of the naive zeta function; however, it is not nearly as clean as the

result for regular graphs. Since a (d, r)-regular hypergraph can be viewed as a special

case of a regular graph, we can directly take many of the results that apply to the

Ihara-Selberg zeta function of a regular graph. We summarize the main properties

here:

1. ZH(u) is defined in terms of an Euler product expansion. There is a sum ex-

pansion as before though we typically don’t need it.

2. The poles of ZH(u) determine when H is a Ramanujan (d, r)-regular hypergraph.

3. ZH(u) satisfies functional equations as in Corollary 2.4.8.

4. Two (d, r)-regular hypergraphs are cospectral if and only if they have the same

naive zeta function.
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We haven’t really managed to take advantage of the extra hypergraph structure.

In the next section, we will show an additional property of the naive zeta function of

a (d, r)-regular hypergraph if the hypergraph satisfies a certain coloring condition.

4.2 Strongly r-colorable hypergraphs

In this section, we will restrict our attention to a more specific class of (d, r)-regular

hypergraphs. We will be able to compute explicitly some of the eigenvalues of the

adjacency operator of these hypergraphs, which will allow us to pinpoint more factors

of the naive zeta function.

We will be interested in strong r-colorings of hypergraphs, as defined by Berge

[3].

Definition 4.2.1 (Berge). A strong r-coloring of a hypergraph H is an r-coloring of

the hypervertices of H such that no two hypervertices contained in the same hyperedge

have the same color. The strong chromatic number γ(H) is the smallest integer r for

which there exists a strong r-coloring.

If H is a (d, r)-regular hypergraph, we must have γ(H) ≥ r since every hyperedge

is of order r. If we actually have γ(H) = r, we can pick out an extra factor of the

naive zeta function if our hypergraph has enough extra structure.

Proposition 4.2.2. Suppose H is a finite, connected (d, r)-regular hypergraph with

γ(H) = r. Suppose, in addition, that any two hyperedges in H intersect in at most

one hypervertex. Then A(H) has eigenvalue −d with multiplicity at least r − 1.

Proof. We begin by fixing a strong r-coloring of H. Let m = |E(H)|, so there are

exactly m hypervertices of each color. We denote by v
(j)
i the ith hypervertex of color
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j. Now we order the hypervertices by color:

v
(1)
1 , · · · , v(1)

m

v
(2)
1 , · · · , v(2)

m

· · ·

v
(r)
1 , · · · , v(r)

m .

With this ordering of the hypervertices, the adjacency operator A has block form

















A11 · · · A1r

...
...

Ar1 · · · Arr

















,

where Aij is an m × m block. In addition, we know a good bit about the blocks.

The diagonal blocks Aii must be zero matrices since the diagonal blocks record the

adjacency relations of hypervertices of the same color. By the definition of a strong

r-coloring, no hypervertices of the same color may be adjacent.

Now suppose that Aij is one of the off-diagonal blocks; i.e., i 6= j. Then, we

claim that each row and column of Aij has exactly d 1’s. Each hypervertex is in

exactly d hyperedges, and each hyperedge has each color possible attached to its

hypervertices. Since any two hyperedges intersect in at most one hypervertex, a

particular hypervertex is adjacent to exactly d distinct hypervertices of each different

color.

W now exhibit r−1 linearly independent eigenvectors, each having eigenvalue −d.

For 2 ≤ k ≤ r, define the vector wk by putting a 1 in the first m entries of wk and

−1 in the kth m entries. The set {wk} defined in this way has exactly r− 1 elements,

and it is clear that it is linearly independent. Moreover, Awk = −dwk for each wk

due to the structure of A described above and the usual matrix operations.
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Knowing these eigenvalues allows us to factor the determinant expression of the

naive zeta function further. We have the following corollary:

Corollary 4.2.3. Suppose H is a finite, connected (d, r)-regular hypergraph with

γ(H) = r. Suppose, in addition, that any two hyperedges in H intersect in at most

one hypervertex. Then the polynomial (1 + du + (d(r − 1)− 1)u2)r−1 divides Z−1
H (u).

Proof. Since H is (d, r)-regular, we have Q̃ = (d(r − 1) − 1)I where I is the identity

matrix. This allows us to rewrite:

Z−1
H (u) = (1 − u2)−χH det(I − Au + (d(r − 1) − 1)Iu2).

Since A and I commute, we can simultaneously diagonalize them to rewrite

Z−1
H (u) = (1 − u2)−χH

∏

λ∈Spec(A)

(1 − λu + (d(r − 1) − 1)u2).

The previous proposition then gives the result by considering the terms when λ =

−d.

While this is certainly a nice statement, the class of hypergraphs for which it

applies is very small. In general, we haven’t truly taken advantage of the freedom

of a hypergraph in our definition of the naive zeta function. In the next chapter,

we will revisit the backtracking definitions to take more advantage of the hypergraph

structure. We will see that the theory develops in a much cleaner way to give us a very

satisfying Riemann hypothesis statement as well as interesting graph applications.
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Chapter 5

Generalized Ihara-Selberg zeta

function

We will now look at what we feel to be a more useful generalization of the Ihara-

Selberg zeta function to hypergraphs. Where the naive zeta function had difficulty

identifying the Ramanujan condition for (d, r)-regular hypergraphs, we will see that

this new zeta function behaves nearly identically to the Ihara-Selberg zeta function.

We will also be able to view this zeta function as a product over prime cycles on

a graph; however, we will be able to choose our cycles with greater flexibility than

before. In this sense, we feel we have a true generalization. Taking this viewpoint, we

will be able to distinguish some non-isomorphic, cospectral k-regular graphs, some-

thing the Ihara-Selberg zeta function cannot do because of Theorem 2.5.2.

We organize this chapter as follows. We begin with the path definitions that are

used to define the zeta function. Then, we generalize the constructions that lead us

through the Perron–Frobenius framework used to obtain an initial determinant ex-

pression of the Ihara-Selberg zeta function. Once we have an initial expression of the

zeta function in terms of a Perron–Frobenius operator on some strongly connected,

oriented graph, we will shift viewpoints and recall the connection between hyper-

67



graphs and bipartite graphs. This will let us draw from Hashimoto’s [16] results for

a more detailed expression.

5.1 The definition

As with the naive zeta function, the most critical step is to decide what the appropri-

ate notion of backtracking is. We will take a more restrictive view this time so that

we can hope to take better advantage of the hypergraph structure. We first recall the

definition of a chain in a hypergraph, found in Berge [3]:

Definition 5.1.1. In a hypergraph H, a chain of length l is defined to be a sequence

{x1, e1, x2, · · · , el, xl+1} such that

1. x1, x2, · · · , xl are all distinct hypervertices of H,

2. e1, · · · , el are all distinct hyperedges of H,

3. xk, xk+1 ∈ ek for k = 1, 2, · · · , l.

This definition is a bit too restrictive for us since we don’t mind reusing hyper-

vertices and hyperedges so long as we wander around some in our hypergraph first.

We can use the spirit of this definition to motivate our path definitions.

A closed path in H is a sequence c = (v1, e1, v2, e2, · · · , vk, ek, v1) such that vi ∈

ei−1, ei for i ∈ Z/kZ. Note that this implies that v1 ∈ ek so that this path really is

“closed.” We require that vi 6= vi+1 unless vi is repeated in ei, in which case we imagine

that we are going to a “different” copy of vi. We say c has hyperedge backtracking if

there is a subsequence of c of the form (ej, vj+1, ej). This simply says that we use a

hyperedge twice in a row. It is permissible to return directly to a hypervertex so long

as a different hyperedge is used. An example of hyperedge backtracking is illustrated

in Figure 5.1.
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•

•
•

e

Figure 5.1: Hyperedge backtracking in a 3-edge e.

We denote by cm the m-multiple of c formed by going around the closed path m

times. Then, c is tail-less if c2 does not have hyperedge backtracking. We call a closed

path c a closed relaxed chain if c has no hyperedge backtracking and is tail-less. In

addition, if c is not the non-trivial m-multiple of some other closed relaxed chain b,

we say that c is a primitive, closed, relaxed chain. As before, we denote by |c|, the

number of hyperedges in c, which we call the length of c. These definitions, of course,

are entirely identical to those given for the previous zeta function. We’ve changed

the names to maintain clarity between the two different path types.

We use the same equivalence relation as before: namely, two primitive, closed,

relaxed chains are equivalent if one is a cyclic permutation of the other. We call the

equivalence class [c] a prime chain. We state these definitions as Path Criteria 3:

Path Criteria 3. Let H be a hypergraph. Then the prime chains on H satisfy Path

Criteria 3 if:

1. A closed relaxed chain c is a closed path with no hyperedge backtracking or tails.

2. A closed relaxed chain is primitive if it is not bm for some other relaxed chain

b and m ≥ 2 ∈ Z.

3. A prime chain c is a representative of the equivalence class [c] of primitive,

closed, relaxed chains, identified by cyclic permutation.

We define the generalized Ihara-Selberg zeta function of a hypergraph H as follows:
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Definition 5.1.2. Let H be a finite, connected hypergraph. Let P be the set of prime

chains in H that satisfy Path Criteria 3, then the generalized Ihara-Selberg zeta

function of H is given, for sufficiently small u ∈ C, by

ζH(u) =
∏

p∈P

(

1 − u|p|
)−1

. (5.1)

Remark 5.1.3. There is a very pleasing interpretation of this zeta function as it

can be applied to graphs. Suppose X is a graph with one triangle. We can imagine

removing the edges in the triangle and replacing them with a hyperedge of order three.

Then we could form this zeta function. This would be different from the Ihara-Selberg

zeta function as what we’ve really done is taken the product of all prime cycles in

the graph X with the extra condition that you cannot use two edges of the triangle

consecutively. We will elaborate on this idea later when we show that two cospectral

graphs with the same Ihara-Selberg zeta function are not, in fact, isomorphic.

With the naive zeta function, it was fairly immediate that the path structure for

H from Path Criteria 2 matched up with the path structure given by Path Criteria 1

on GH. It will turn out that the associated bipartite graph BH will have an important

role to play here; however, this is not immediately clear. As with the Ihara-Selberg

zeta function, we will first begin by constructing a strongly connected, oriented graph

with the same path structure as H as given by Path Criteria 3. Then we will be able

to use the Perron–Frobenius framework to start our factorization. Our strategy will

be to generalize Kotani and Sunada’s method that was detailed for graphs [21].
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5.2 From hypergraph to directed graph

In this section, we show how to take an arbitrary hypergraph H and convert it into

a strongly connected, oriented graph which has the admissible prime cycles in one-

to-one correspondence with the prime chains on H. When we did this construction

for graphs, the idea was to first orient the graph and then to add in the opposing

orientation. We then constructed the oriented line graph by looking at how oriented

edges fed into each other. The key to dealing with backtracking in the initial graph

was to not let an oriented edge feed into its inverse edge when we were forming the

oriented line graph. This neatly resolved the issue.

For hypergraphs, the construction is essentially the same, but we will have a

stronger restriction on which oriented edges can feed into other oriented edges. This

will allow us to disallow using the same hyperedge to go to two consecutive hyper-

vertices even if its a different hypervertex. The key step will be to color the edges of

an oriented graph and then construct an oriented line graph with the rule that you

cannot use two colors in a row. This will let us generalize the backtracking condition

we had on graphs in the appropriate way.

Let H be a finite, connected hypergraph. We label the edges of H: E = {e1, e2, · · · ,

em} and fix m colors {c1, c2, · · · , cm}. We now construct an edge-colored graph GHc

as follows. The vertex set V (GHc) is the set of all hypervertices V (H). For each

hyperedge ej ∈ E(H), we construct an |ej |-clique in GHc on the hypervertices in ej .

We then color the edges of this |ej|-clique cj . Thus if ej is a hyperedge of order i, we

have
(

i
2

)

edges in GHc, all colored cj. This construction should look very similar to

the construction of GH. In fact, it is the same except that we’ve colored the edges

depending upon which hyperedge they are induced from.

Once we’ve constructed GHc, we orient all of the edges. As before, we then

include the opposition orientation as well, giving the inverse edges the same colors,

so we obtain a graph GHo
c which has twice as many colored, oriented edges as GHc.
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•v5
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Figure 5.2: One possible construction of the graph GHo
c from a hypergraph.

GHo
c will serve the same role as Xo served for graphs.

Example 5.2.1. See Figure 5.2 for an example of this construction. The object on

the left is a hypergraph with colors used to denote hyperedges. The hypervertices are

{v1, · · · , v6}, and the hyperedges are {v1, v2, v3}, {v3, v4, v5}, {v1, v5, v6}, {v2, v4, v6}.

The figure on the right is a construction of the edge-colored, oriented graph GHo
c . The

hyperedge {v1, v2, v3} has become 6 red, oriented edges on the vertices {v1, v2, v3} in

GHo
c .

Remark 5.2.2. There are many possible ways to construct a graph GHo
c , depending

upon how we choose to orient the edges of GHc. We will get the same result irrespec-

tive of this choice, so in principle, it won’t matter which orientation we choose when

doing our constructions.

Finally, we construct the oriented line graph Ho
L = (VL, Eo

L) associated with our

choice of GHo
c by

VL = E(GHo
c),

Eo
L = {(ei, ej) ∈ E(GHo

c) × E(GHo
c); c(ei) 6= c(ej), t(ei) = o(ej)},
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where c(ei) is the colored assigned to the oriented edge ei ∈ E(GHo
c).

This condition can look slightly complicated, but all we are doing is cataloguing

which oriented edges feed into oriented edges of a different color. If our hypergraph is

actually just a graph, the only oriented edge with the same color is the inverse edge,

so we actually recover the construction of Xo
L given earlier. We give an example in

Figure 5.3 which is a bit smaller than the hypergraph in Figure 5.2 so that we can

fully see what is happening.

Now that we have a construction for the oriented line graph of a hypergraph, we

need to show that it is strongly connected and has the same cycle structure as the

prime chains on H. If we can do this, we will be able to write the generalized Ihara-

Selberg zeta function of H in terms of a determinant involving the Perron–Frobenius

operator T of Ho
L by invoking Lemma 2.3.2.

Proposition 5.2.3. Suppose H is a finite, connected hypergraph such that every

hypervertex is in at least two hyperedges. Further, suppose that H contains more than

two prime chains. Then, the oriented line graph Ho
L constructed as above is finite and

strongly connected.

Proof. The vertices of Ho
L are of the form {v, w}e where e ∈ E(H) and v, w ∈ e. This

represents using the hyperedge e to go from v to w. To show that Ho
L is strongly

connected, we must show that given any two vertices x, y ∈ V (Ho
L), there exists a

path which begins at x and ends at y. We write vertex x as {v1, v2}e1 for some

e1 ∈ E(H) and v1, v2 ∈ e1. Similarly, we write y as {vk, vk+1}ek
for some ek ∈ E(H)

and vk, vk+1 ∈ ek. To construct a path in Ho
L which begins at x and ends at y, we first

find a path c in H of the form c = (v1, e1, v2, e2, · · · , ek−1, vk, ek, vk+1) such that c has

no hyperedge backtracking. If c has no hyperedge backtracking, when we follow this

path through the construction of the oriented line graph, we get a path in Ho
L which

begins at x = {v1, v2}e1 and ends at y = {vk, vk+1}ek
, as desired. We now restrict our

attention to the hypergraph H and show that there is always such a path c.
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•
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Figure 5.3: We begin with a hypergraph H in the top left. Then we construct
one possible edge-colored oriented graph GHo

c . From this graph, we construct the
corresponding oriented line graph. We notice that there are no edges that go from ai

to aj ; this is because they represent the red edges in GHo
c .
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Since H is connected and every hypervertex is in at least 2 hyperedges, there exists

a path d which begins with (v1, e1, v2, · · · ) and finishes at vertex vk. We can refine d

to remove any consecutive use of hyperedges. For instance, if there is a subsequence

of the form {vi, ei, vi+1, ei, vi+2}, we could replace it with {vi, ei, vi+1}. Thus, we can

assume without loss of generality that d has no hyperedge backtracking.

Now there are two cases: either the path used ek in the last step to get to vk or it

did not. If the path did not use ek, we can use ek to go to vk+1, and we are done.

To illustrate how the second case can occur, we refer to figure 5.4. It is impossible

to begin a path with {v1, e1, v2} and end it with {v4, e3, v3} because our start gets us

off in the wrong direction, and there is no room to turn around without backtracking.

Hence, we need the additional hypothesis that there are more than two prime chains.

We can get the desired path by leaving vk via a hyperedge different than ek. Then

there is some chain (which may have a tail) which returns to vk via a hyperedge

different than ek (and doesn’t use hyperedge backtracking — we can refine in the

same manner as before). Now we can go from vk to vk+1 via ek without hyperedge

backtracking. This yields the desired path. We refer to figure 5.5 for an example.

We begin with {v1, e1, v2} and wish to finish with {v4, e3, v3}. To do this, we take

advantage of a different chain originating from v5 to be able to finish the path in the

appropriate direction.

In essence, we need more than two prime chains to allow ourselves to “turn around”

if we start in the wrong direction. Since we have the desired path in the hypergraph,

as mentioned before, we get a path which starts at x and finishes at y in Ho
L. Hence,

Ho
L is strongly connected.

That Ho
L is finite is clear since H is finite.

Proposition 5.2.3 tells us that Ho
L is a candidate for the Perron–Frobenius frame-

work we established earlier. Now we need to show that Ho
L is the correct model to

understand the generalized Ihara-Selberg zeta function on H.
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Figure 5.4: A cycle of length 4
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•
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•
•

e1

e3

Figure 5.5: “Using a second chain to turn around”
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Proposition 5.2.4. Let H be a finite, connected hypergraph and let Ho
L be the asso-

ciated oriented line graph. Then there is a one-to-one correspondence between admis-

sible prime cycles in Ho
L and prime chains in H.

Proof. To show the cycle correspondence, we will actually show that there is a corre-

spondence between paths in H with no hyperedge backtracking and admissible paths

in Ho
L. The cycle correspondence will then follow since all the relations imposed on

paths are the same.

Suppose v and w are hypervertices contained in a hyperedge e. Then we de-

note by {v, w}e the oriented edge in GHo
c with origin v, terminus w, and color

given by the color chosen for e. We let c = (v1, e1, v2, e2, · · · , vk, ek, vk+1) be a

path in H with no hyperedge backtracking. This corresponds to the path co =

({v1, v2}e1, {v2, v3}e2 , · · · , {vk, vk+1}ek
) in GHo

c . Since there is no hyperedge back-

tracking, ei 6= ei+1 at every step, so we change colors as we follow each oriented edge.

Then the corresponding path c̃ = (({v1, v2}e1, {v2, v3}e2), ({v2, v3}e2, {v3, v4}e3), · · · ,

({vk−1, vk}ek−1
, {vk, vk+1}ek

)) in Ho
L is admissible with length k.

Similarly, given an admissible path in Ho
L, we can realize it as a path in GHo

c

which changes colors at every step. That means the corresponding path in H changes

hyperedges at every step; i.e., it does not have hyperedge backtracking. The lengths,

then, are the same.

Putting these two propositions together, we can invoke Lemma 2.3.2 to start our

factorization:

Theorem 5.2.5. Let H be a finite, connected hypergraph with more than two prime

chains. Then the generalized Ihara-Selberg zeta function ζH(u) satisfies

ζH(u) = ZHo
L
(u) = det(I − uT )−1,

where T is the Perron–Frobenius operator associated with Ho
L.

77



Proof. The equality ζH(u) = ZHo
L
(u) follows from Proposition 5.2.4.

To get the second equality, we first note that Ho
L is finite and strongly connected

by Proposition 5.2.3. Then we can invoke Lemma 2.3.2 to realize ZHo
L
(u) = det(I −

uT )−1.

This theorem gives us an initial determinant expression of ζH(u). In particular,

ζH(u) must be a rational function and will have a simple pole at u = α−1 where α

is the Perron–Frobenius root of T , defined in Lemma 2.3.1. In the next section, we

will see that the associated bipartite graph BH will have an important role to play in

understanding the zeta function. This will allow us to relate our zeta function to the

zeta functions Hashimoto considered on bipartite graphs [16].

5.3 Hashimoto’s determinant expressions

In the previous section, we were able to realize the generalized Ihara-Selberg zeta

function as a determinant of linear operators. In this section, we will see that by

shifting our view to the associated bipartite graph of a hypergraph, we can do much

better. Once we’ve established the needed relation between chains on hypergraphs

and paths on bipartite graphs, we will draw very heavily from Hashimoto’s work on

zeta functions of bipartite graphs [16].

To motivate the relation we are looking for, we look at a simple example. In

Figure 5.6, we look at the closed relaxed chain given by c = {v1, e1, v2, e3, v4, e2, v1}.

This corresponds to a primitive geodesic c̃ = {v1, e1, v2, e3, v4, e2, v1} in the associated

bipartite graph. In fact, this sort of correspondence is true in general:

Proposition 5.3.1. Let H be a finite, connected hypergraph with associated bipartite

graph BH. Then there is a one-to-one correspondence between prime chains of length

l in H and prime cycles of length 2l in BH.
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Figure 5.6: A simple example of a relaxed chain of length 3 in a hypergraph and a
corresponding primitive geodesic of length 6 in its associated bipartite graph.

Proof. We will begin with a representative of a prime chain of length l in H. Let

c = {v1, e1, · · · , vl, el, v1} be a closed relaxed chain in H. Then we claim that c̃ =

{v1, e1, · · · , vl, el, v1} is a primitive geodesic in BH. It is clear that c̃ is both closed

and primitive if c is, so we need only check that c̃ has no backtracking or tails.

Let’s look at what hyperedge backtracking in the hypergraph means. We say that

c has hyperedge backtracking if we use the same hyperedge twice in a row. On the

bipartite graph side, this means we leave a vertex in the set from E(H), go to a vertex

in the set V (H) and then backtrack to the vertex in E(H). Still on the bipartite side,

the only other way to backtrack is to go from a vertex in V (H) to a vertex in E(H)

and directly back. Thus, we would have the following sequence in the hypergraph:

(vi, ei, vi). This type of sequence is expressly disallowed unless vi is repeated more

than once in ei. If this happens, there is a multiple edge in BH representing this,

which means we can actually return to the first vertex without backtracking. Putting

all of this together, we see that no hyperedge backtracking in H is equivalent to no

backtracking on the corresponding path in BH. Once we know that backtracking
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isn’t an issue, having no tails also follows immediately since backtracking in c̃2 would

correspond to hyperedge backtracking in c2. Thus, each prime chain of length l in H

corresponds to a primitive geodesic of length 2l in BH.

We now look at prime cycles in BH and show that they correspond to prime

chains in H. Without loss of generality, we can assume that the first entry in a

representative of a prime cycle in BH is a vertex parameterized by the set V (H). If

it is not, we simply shift the cycle one slot in either direction, and we will have an

appropriate representative because the graph is bipartite. Suppose the representative

looks like c̃ = {v1, e1, · · · , vl, el, v1}; then we have the following closed relaxed chain

in H: c = {v1, e1, · · · , vl, el, v1}. This is a closed relaxed chain by the same reasons

as above since c̃ is a primitive geodesic. Also, |c̃| = 2l = 2|c|, so we see that given a

prime cycle in BH, it corresponds to a prime chain of half the length in H.

This correspondence allows us to relate the generalized Ihara-Selberg zeta function

of a hypergraph to the Ihara-Selberg zeta function of its associated bipartite graph.

Theorem 5.3.2. Let H be a finite, connected hypergraph such that every hypervertex

is in at least two hyperedges. Then,

ζH(u) = ZBH
(
√

u).

Proof. Let PH be the set of prime chains on H and PBH
the set of prime cycles on BH.

Then we rely on the previous proposition to write:

ζH(u) =
∏

p∈PH

(

1 − u|p|
)−1

=
∏

p∈PH

(

1 − u2|p|/2
)−1

=
∏

ℓ∈PB
H

(

1 − u|ℓ|/2
)−1

= ZB(
√

u).
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As an immediate consequence of this relation, we see that, for an arbitrary hyper-

graph H which satisfies the conditions of Theorem 5.3.2 and its dual hypergraph H∗,

we must have

ζH(u) = ζH∗(u)

since they have the same associated bipartite graph BH. In addition, we can rewrite

Theorem 2.4.1 to give us a form of ζH(u) which is more amenable to computation:

Corollary 5.3.3. Let H be a finite, connected hypergraph such that every hypervertex

is in at least two hyperedges. Let ABH
be the adjacency operator on BH, and let QBH

be

the Q operator on BH as defined at the beginning of Section 2.4. Let I be the identity

operator on C(V (H))⊕C(E(H))—C(X) is the space of function that map from a set

X to the real numbers. Then

ζH(u) = ZBH
(
√

u) = (1 − u)χ(BH) det(I −
√

uABH
+ uQBH

)−1,

where χ(BH) = |V (BH)| − |E(BH)|.

Remark 5.3.4. We make a few notes:

1. Despite the square root that appears in this expression, ζH(u) is a rational

function. We see this clearly in the previous section, but we can also recover it

quickly by recalling that a bipartite graph only has prime cycles of even length.

2. The adjacency operator of BH can be quickly constructed from the incidence

matrix of H as in (3.3).

3. Similarly, we can construct the operator QBH
quickly by considering the degrees

of vertices in the associated bipartite graph. If x is a vertex which comes from

V (H), we have d(x) is the number of hyperedges of which x is a member,

counting possible multiplicity. If x comes from E(H), then d(x) is the order of

the associated hyperedge. From these two facts, we can easily reconstruct QBH
.
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4. We also see that |V (BH)| = |V (H)| + |E(H)|. In addition, |E(BH)| can be

directly computed in two different ways via

|E(BH)| =
∑

e∈E(H)

|e| =
∑

v∈V (H)

♯{e ∈ E(H); v ∈ e}.

Example 5.3.5. We compute the generalized Ihara-Selberg zeta function of the hy-

pergraph in Figure 5.6 in two ways. By going through the oriented line graph, we

have

ζH(u)−1 = det(I − uT ) = (1 − u)(1 + u + u2 − 5u3 − 5u4 − 5u5 + 4u6 + 4u7 + 4u8).

We can also compute the zeta function of the associated bipartite graph by using

Bass’s Theorem to realize

ZBH
(u)−1 = (1 − u2)(1 + u2 + u4 − 5u6 − 5u8 − 5u10 + 4u12 + 4u14 + 4u16).

Thus, we can directly see the relation ζH(u) = ZBH
(
√

u).

We emphasize that Corollary 5.3.3 is mainly useful for computation. In general,

the diagonal entries of the Q matrix will not all be the same, making it quite difficult

to manipulate the expression for theoretical results. Theorem 5.3.2 makes it clear

that the problem of factoring the generalized Ihara-Selberg zeta function is really a

problem of factoring the Ihara-Selberg zeta function of a bipartite graph. Fortunately,

in [16], Hashimoto deals with this question in great detail. We will define the notation

that Hashimoto uses then state his main result in full. Once we have his main result,

we will show how it fits within our framework and look at some consequences.

Notation 3. We let X be a bipartite graph with bipartition V (X) = V1 ∪ V2. Then
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we construct two graphs X [i] (i = 1, 2) as follows:

V (X [i]) := Vi,

E(X [i]) := {c primitive geodesic ; |c| = 2, o(c), t(c) ∈ Vi}. (5.2)

We see an example of this construction in Figure 5.7. We should point out that if

we start with a hypergraph H, then the two graphs we construct from BH are exactly

GH and GH∗. This follows from the definition we gave for the adjacency operator on

a hypergraph.

We now give Hashimoto’s result in full. The interested reader can find the original

reference as Main Theorem(III) in [16]:

Theorem 5.3.6 (Hashimoto). Suppose that X is a finite, connected (q1 + 1, q2 + 1)-

biregular bipartite graph with q1 ≥ q2. Let A[i] be the adjacency matrix of the associated
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graph X [i] (i = 1, 2), and let ni = |V (X [i])|. Then, one has

ZX(
√

u)−1

= (1 − u)(r−1)(1 + q2u)(n2−n1) × det[In1 − (A[1] − q2 + 1)u + q1q2u
2]

= (1 − u)(r−1)(1 + q1u)(n1−n2) × det[In2 − (A[2] − q1 + 1)u + q1q2u
2],

where r = n1q1 − n2 + 1 = n2q2 − n1 + 1 is −χ(X) + 1.

This theorem gives us a very good expression for biregular bipartite graphs. These

bipartite graphs exactly correspond to bipartite graphs associated with (d, r)-regular

hypergraphs. We rewrite Theorem 5.3.6 to put it into our notation:

Corollary 5.3.7. Suppose that H is a finite, connected (d, r)-regular hypergraph with

d ≥ r. Let n1 = |V (H)|, n2 = |E(H)|, and q = (d− 1)(r− 1). Let A be the adjacency

operator of H, and let A∗ be the adjacency operator of H∗. Then one has

ζH(u)−1

= (1 − u)−χ(BH)(1 + (r − 1)u)(n2−n1) × det[In1 − (A − r + 2)u + qu2]

= (1 − u)−χ(BH)(1 + (d − 1)u)(n1−n2) × det[In2 − (A∗ − d + 2)u + qu2],

where −χ(BH) = n1(d − 1) − n2 = n2(r − 1) − n1.

Corollary 5.3.7 will provide the tool we need to produce theoretical results about

the generalized Ihara-Selberg zeta function on (d, r)-regular hypergraphs. The condi-

tion that d ≥ r is actually not a problem. If H is a (d, r)-regular hypergraph; then, H∗

is (r, d)-regular. Thus, if d < r, we simply consider H∗. In the next section, we will

explore some of the consequences of this determinant expression, recovering functional

equations and a reasonable Riemann hypothesis as we had for regular graphs.
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5.4 Consequences of the determinant expression

Our first observation is that the generalized Ihara-Selberg zeta function of a hyper-

graph is a non-trivial generalization of the Ihara-Selberg zeta function. By this, we

mean that we can produce an infinite number of zeta functions which are not the

Ihara-Selberg zeta function of any graph. A simple way to produce zeta functions

which did not come from a graph is encoded in the next proposition.

Proposition 5.4.1. Suppose X is a finite graph, and H is a finite hypergraph. Then,

1. The degree of the polynomial ZX(u)−1 is 2|E(X)|.

2. The degree of the polynomial ζH(u)−1 is
∑

e∈E(H)
|e|.

Proof. 1. Let X be a finite graph. Then by Theorem 2.4.1,

ZX(u)−1 = (1 − u2)|E|−|V | × det(I − uA + u2Q).

The degree of the determinant term is 2|V |, and the degree of the explicit poly-

nomial is 2|E(X)| − 2|V (X)|. Hence, the degree of ZX(u)−1 is 2|E(X)| − 2|V (X)|+

2|V (X)| = 2|E(X)|.

2. Let H be a finite hypergraph with associated bipartite graph BH. Then by

Theorem 5.3.2,

ζH(u)−1 = ZBH
(
√

u)−1.

From the previous part, we see that the degree of ZBH
(
√

u)−1 is |E(BH)|. We can

compute this explicitly as |E(BH)| =
∑

e∈E(H)
|e|.

Hence, the reciprocal of the Ihara-Selberg zeta function of a graph will always

have even degree. If we wish to exhibit hypergraphs with generalized Ihara-Selberg

zeta functions that did not arise from some graph, we need only find a hypergraph

for which
∑

e∈E(H)
|e| is odd. This is quite easy to do; for instance, we might take any
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finite hypergraph with exactly one 3-edge and as many hyperedges of even orders as

we want. However, ζH(u2) can be realized as the zeta function of a graph, namely of

the associated bipartite graph of H.

Example 5.4.2. In example 5.3.5, we computed the generalized Ihara-Selberg zeta

function of the hypergraph appearing in Figure 5.6. We see that the reciprocal of the

zeta function has odd degree, so this is an example of a hypergraph which produces

a zeta function that no graph could produce.

Before we turn to a discussion of the poles of the generalized Ihara-Selberg zeta

function of a (d, r)-regular hypergraph, we look at some of the symmetry provided by

Hashimoto’s expression. We can give several functional equations in the same spirit

as Corollary 2.4.8.

Corollary 5.4.3. Suppose that H is a finite connected (d, r)-regular hypergraph with

d ≥ r. Let n1 = |V (H)|, n2 = |E(H)|, q = (d − 1)(r − 1), and χ = χ(BH). Let A

be the adjacency operator of H, and let A∗ be the adjacency operator of H∗. Finally,

suppose p(u) is a polynomial in u that satisfies p(u)η = ±(qu2)ηp( 1
qu

)η for all η ∈ N.

Then we have the following functional equations for ζH(u):

1. ΛH(u) = p(u)n1(1 − u)−χ(1 + (r − 1)u)n2−n1ζH(u) = ±ΛH( 1
qu

).

2. Λ̃H(u) = p(u)n2(1 − u)−χ(1 + (d − 1)u)n1−n2ζH(u) = ±Λ̃H( 1
qu

).

Proof. The strategy is really one of brute force algebra, using Corollary 5.3.7. By

Corollary 5.3.7, we can write ζH(u) as

ζH(u) = (1 − u)χ(1 + (r − 1)u)(n1−n2) × det[In1 − (A − r + 2)u + qu2]−1.

Substituting this expression into ΛH(u), we have

ΛH(u) = p(u)n1 × det[In1 − (A − r + 2)u + qu2]−1.
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We now algebraically manipulate the determinant term:

det[In1 − (A − r + 2)u + qu2]−1 = det[
qu2

qu2
− (A − r + 2)

qu2

qu
+

qu2

1
]−1

=

(

1

qu2

)n1

× det[
1

qu2
− (A − r + 2)

1

qu
+

1

1
]−1

=

(

1

qu2

)n1

× det[
1

1
In1 − (A − r + 2)

1

qu
+

q

(qu)2
]−1.

We substitute this back into the expression for ΛH(u) and then use the given condition

for p(u)n1:

ΛH(u) = p(u)n1 ×
(

1

qu2

)n1

× det[
1

1
In1 − (A − r + 2)

1

qu
+

q

(qu)2
]−1

= ±(qu2)n1p(
1

qu
)n1 ×

(

1

qu2

)n1

× det[
1

1
In1 − (A − r + 2)

1

qu
+

q

(qu)2
]−1

= ±p(
1

qu
)n1 × det[

1

1
In1 − (A − r + 2)

1

qu
+

q

(qu)2
]−1

= ±ΛH(
1

qu
).

This completes the first functional equation. The second one is identical, using

Hashimoto’s second expression. We leave it as an exercise to the reader.

Remark 5.4.4. Using Corollary 5.4.3, we can write down several explicit functional

equations for (d, r)-hypergraphs with d ≥ r.

1. ΛH(u) = (1 − u)n1−χ(BH)(1 + (r − 1)u)(n2−n1)(1 − qu)n1ζH(u) = ΛH( 1
qu

).

2. Λ̃H(u) = (1 − u)n2−χ(BH)(1 + (d − 1)u)(n1−n2)(1 − qu)n2ζH(u) = Λ̃H( 1
qu

).

3. ΞH(u) = (1 − u)−χ(BH)(1 + (r − 1)u)(n2−n1)(1 + qu2)n1ζH(u) = ΞH( 1
qu

).

4. Ξ̃H(u) = (1 − u)−χ(BH)(1 + (d − 1)u)(n1−n2)(1 + qu2)n2ζH(u) = Ξ̃H( 1
qu

).
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5.4.1 The Riemann hypothesis and Ramanujan hypergraphs

Now that we have several established functional equations, we turn to the next im-

portant question for a zeta function. We will look at the location of the poles and

show that they very explicitly detect the Ramanujan condition on a (d, r)-regular

hypergraph.

We assume throughout this section that H is a (d, r)-regular hypergraph with

d ≥ r. We let n2 = |E(H)|, n1 = |V (H)|, and A be the adjacency operator on H.

Then, we have that n2 ≥ n1 since d ≥ r. By Equation (3.5), −d is not an obvious

eigenvalue of H. This will simplify our consideration of the Ramanujan condition on

H.

We now want to focus on the determinant term in Hashimoto’s expression. Since

A is symmetric, it is diagonalizable, so suppose Q diagonalizes A. Then,

det[In1 − (A − r + 2)u + qu2] = det
(

Q[In1 − (A − (r − 2)In1)u + qu2In1]Q
−1
)

= det[QIn1Q
−1 − (QAQ−1 − (r − 2)QIn1Q

−1)u + qu2QIn1Q
−1]

= det[In1 − (QAQ−1 − r + 2)u + qu2]

=
∏

λ∈Spec(H)

[1 − (λ − r + 2)u + qu2].

This is the expression we need to fully examine the relation between poles of ζH(u)

and eigenvalues of H. The next two propositions detail the connection fully.

Proposition 5.4.5. Suppose H is a (d, r)-regular hypergraph with d ≥ r. Then,

1. ζH(u) has a pole at u = 1 with multiplicity n1(d − 1) − n2 = n2(r − 2) − n1 =

−χ(BH),

2. ζH(u) has a pole at u = − 1
r−1

with multiplicity n2 − n1.

Proof. The first set of poles is contributed by the factor (1−u)χ(BH) given in Corollary

5.3.7. The second set is from the factor (1 + (r − 1)u)(n1−n2).
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Proposition 5.4.6. Suppose H is a (d, r)-regular hypergraph with d ≥ r. Let q =

(d−1)(r−1), then H is a Ramanujan hypergraph if and only if the poles of det[In1 −

(A − r + 2)u + qu2]−1 are distributed as below:

1. There is a simple pole at u = 1 and at u = 1
q
.

2. All other poles lie on the circle in the complex plane given by |r| = 1√
q
.

Proof. Since H is a (d, r)-regular hypergraph, there is an eigenvalue λ = d(r−1). We

first rewrite the factor for this eigenvalue as

f(u) = qu2 − (λ − r + 2)u + 1

= qu2 − (q + 1)u + 1

= (1 − u)(1 − qu).

We can then see the roots at u = 1 and at u = 1
q

as claimed in part 1. We note that if

H is Ramanujan, no other eigenvalue is d(r−1), so these poles are simple as claimed.

We now look at the eigenvalues which satisfy λ 6= d(r − 1). Then the polynomial

f(u) = qu2 − (λ − r + 2)u + 1 has roots at

u =
(r − 2 − λ) ±

√

(λ − r + 2)2 − 4q

2q
.

Then u has Im(u) 6= 0 if and only if (λ − r + 2)2 ≤ 4q. This is true if and only if

|λ − r + 2| ≤ 2
√

q, which is true if and only if H is Ramanujan, by Definition 3.3.2

(there are no obvious eigenvalues to consider by our assumption on d and r). In this

case, we can calculate the modulus of the roots by

|u|2 =
(λ − r + 2)2

4q2
+

4q − (λ − r + 2)2

4q2

=
4q

4q2
=

1

q
.

89



This gives us a complete characterization of the relation between the poles of the

generalized Ihara-Selberg zeta function and the Ramanujan condition on a hyper-

graph. Where the naive zeta function had far more considerations and was more

delicate, this zeta function provides a very clean solution that accurately mirrors the

case for graphs. We propose a Riemann hypothesis as follows:

Definition 5.4.7. Let H be a (d, r)-regular hypergraph with d ≥ r and q = (d−1)(r−

1). We then consider ζH(q−s). We say that ζH(q−s) satisfies the modified hypergraph

Riemann hypothesis if and only if for

Re(s) ∈ (0, 1),
(1 + (r − 1)q−s)(n2−n1)

ζH(q−s)
= 0 =⇒ Re(s) =

1

2
.

We state the connection between this “Riemann hypothesis” and the generalized

zeta function as a theorem:

Theorem 5.4.8. For a connected (d, r)-regular hypergraph H, ζH(q−s) satisfies the

modified hypergraph Riemann hypothesis if and only if H is a Ramanujan hypergraph.

Proof. The proof follows from the definition of the modified hypergraph Riemann

hypothesis and the previous two propositions detailing where the poles of the zeta

function lie. Every connected (d, r)-regular hypergraph has d(r − 1) as a simple

eigenvalue, so there is always a simple pole at u = 1 and at u = 1
q
. Hence, there is no

possibility that ζ has the correct complex poles but not the simple real poles required

in Proposition 5.4.6.

This result and the ability to produce hypergraphs with new zeta functions are

what motivate us to prefer this zeta function to the naive zeta function. We show one

more interesting theoretical property of the generalized Ihara-Selberg zeta function
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that partially generalizes a nice property of the Ihara-Selberg zeta function in the

next section.

5.5 Unimodular hypergraphs and the generalized

Ihara-Selberg zeta function

Before we move on and show how the generalized Ihara-Selberg zeta function can

be interpreted as a graph zeta function with a restricted cycle set, we show how

some well-known hypergraph properties fit into this framework. In particular, we will

be interested in the case when the generalized Ihara-Selberg zeta function is an even

function. A graph is bipartite if and only if its Ihara-Selberg zeta function is even, and

we will see that the generalized zeta function indicates some of the generalizations

of “bipartite” to hypergraphs. The hypergraph theorems we refer to are all from

Chapter 20, Section 3 of Berge [3].

Definition 5.5.1 (Berge). We let H = (V, E) be a finite hypergraph where the hyper-

edge set E = {Ei : i ∈ I}. An equitable q-coloring of H is a partition (S1, · · · , Sq)

of the hypervertices into q classes such that for each i ∈ I and for j, j
′ ≤ q,

−1 ≤ |Ei ∩ Sj| − |Ei ∩ Sj′ | ≤ 1.

The smallest number q ≥ 2 for which there exists an equitable q-coloring is the equi-

table chromatic number κ(H) of H. H is unimodular if for each S ⊂ V , the induced

subhypergraph HS admits an equitable bicoloring.

A graph is unimodular if and only if it is bipartite, so this definition is a general-

ization of bipartite for hypergraphs. We now look at what it means for the generalized

Ihara-Selberg zeta function to be an even function:
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Proposition 5.5.2. Let H be a hypergraph. Then, ζH(u) = ζH(−u) for all u ∈ C if

and only if every primitive cycle in H has even length.

Proof. We consider the power series expansion of the zeta function given as an Euler

product in Definition 5.1.2. Then u appears to an odd power if and only if there

is a prime cycle of odd length. Hence, the zeta function must be even on a disk

about the origin. Since it continues to the reciprocal of a polynomial, it must be even

throughout the complex plane.

This is all we need to reframe several of the results cited in [3]:

Theorem 5.5.3. Suppose H is a hypergraph with ζH(u) an even function. Then, H

is unimodular.

Proof. This follows immediately from Theorem 10 in Chapter 20 of [3]. The main

idea is that if ever primitive cycle has even length, H is unimodular.

Corollary 5.5.4. Suppose H is a hypergraph. Then ζH(u) is even if and only if each

hypergraph H
′
, defined by taking hyperedges to be subsets of hyperedges of H and the

hypervertex set to be the union of all the new hyperedges, satisfies κ(H
′
) ≤ 2.

Proof. The result follows from the definition of unimodular since subhypergraphs

must admit equitable bicolorings.

Finally, we will look at a different sort of application for the generalized Ihara-

Selberg zeta function. In the next section, we will look at two 3-regular graphs which

are cospectral. The Ihara-Selberg zeta function of two cospectral regular graphs is

always the same, making it a very poor graph invariant when it comes to determining

if two regular graphs are isomorphic or not. We will show a way to distinguish the

graphs with zeta function considerations, improving the use of zeta functions as a

tool for graph theorists.
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Figure 5.8: A graph with a triangle singled out.

5.6 Distinguishing cospectral graphs

The ideas in this section are motivated, in part, by the question of determining if

two given graphs are isomorphic. We saw earlier that using the Ihara-Selberg zeta

function as a graph invariant yields mixed results when one wants to distinguish the

graphs. For k-regular graphs, being cospectral and having the same Ihara-Selberg

zeta function are equivalent. This suggests that, in this case, the cycle structure is

very heavily influenced by the spectral properties. Our idea is to try to restrict the

cycles we consider so that we are forced to rely more heavily on the actual graph

structure instead of the spectral properties. We refer to Figure 5.8 to illustrate how

the generalized Ihara-Selberg zeta function might be used to do this. We will start

with the set of all prime cycles in this graph. Then we can throw out any prime cycle

that uses two red edges in a row. We actually will be throwing out infinitely many

prime cycles when we do this. We could now define a new zeta function using this

smaller set of prime cycles in the same way as before. It turns out that this is exactly

the generalized Ihara-Selberg zeta function for the hypergraph formed by replacing

the red triangle with a 3-edge on the same vertices.

We could perform the same sort of construction for other graphs by replacing

cliques of any size with a hyperedge on the respective vertices. In this way, we would

hope that the path structure would more accurately mirror the structure of the graph

and not be as influenced by its spectrum.

Throughout the rest of this section, we will focus our attention on Figure 5.9.
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Figure 5.9: Two cospectral 3-regular graphs constructed by Stark and Terras in [35]
by zeta function and covering considerations.
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Stark and Terras constructed these graphs as 5-fold covers of the complete graph on

4 vertices. They have the same Ihara-Selberg zeta function and are thus cospectral.

It is fairly straightforward to check that, though these graphs are cospectral, they

are not isomorphic. We will offer a different proof of this fact as an application of the

generalized Ihara-Selberg zeta function.

When we compute the Ihara-Selberg zeta function of X1 (and thus of X2), we find

that the coefficient of u3 in the polynomial is −8. Hence, by Theorem 2.5.9, each

graph has exactly 4 triangles. We can find them quickly by inspection. In X1, we’ve

highlighted two of the triangles in red. Each of the red triangles intersects another

triangle. In X2, we’ve highlighted all four triangles in green.

We now suppose that X1 and X2 are isomorphic. We change X1 into a hypergraph

in the following way. We delete each red triangle. We then replace the triangle with

a hyperedge on the three vertices. The advantage to doing this is that we can now

look at the generalized Ihara-Selberg zeta function on this hypergraph. This will

correspond to looking at a product over all primitive cycles in X1 that do not use two

red edges in a row. In essence, we’ve restricted slightly our set of prime cycles.

If X1 and X2 are isomorphic, we should be able to repeat the transformation from

graph to hypergraph in X2 and have isomorphic hypergraphs. There are four possible

ways to create a hypergraph from X2 in the same manner as we did for X1. For each

green subgraph, we have a choice of two triangles to focus on, and there are two such

green subgraphs.

Now a simple comparison of generalized Ihara-Selberg zeta functions distinguishes

the graphs. All four of the hypergraphs constructed from X2 actually have the same

generalized Ihara-Selberg zeta function. However, the hypergraph we constructed

from X1 has a different zeta function. Hence, these two graphs are not isomorphic.

This example suggests that the generalized Ihara-Selberg zeta function, by being

considered as a zeta function on a graph with a restricted set of prime cycles, can
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bring more leverage to the problem of distinguishing non-isomorphic graphs. We

can restrict our cycle structures by disallowing consecutive edges from a particular

j-clique in a graph. This allows us to escape from Quenell’s result that k-regular

graphs are cospectral if and only if they have the same path structures.

We should mention that there is a drawback to this method as well. We were for-

tunate that our example had a relatively small number of triangles. As the number

of non-disjoint triangles grows, we have to consider more and more potential hyper-

graphs. Here, we only had to consider 4 potential hypergraphs constructed from X2;

however, this was a graph with quite a small number of triangles.

Other options would be to make every possible triangle into a hyperedge; then,

you would only have to compare one generalized Ihara-Selberg zeta function for each

initial graph. For this example, changing all four triangles into hyperedges and then

computing the generalized Ihara-Selberg zeta function of the resulting hypergraphs

also distinguishes the graphs.

All zeta functions referenced in this section are available from the author by

request.
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Chapter 6

Conclusion

6.1 Future research

We’d like to outline some very broad thoughts for further research in this section.

For the most part, these are quite large ideas that could be difficult to approach

but would have a very large pay-out in terms of results if they can be resolved. We

will look at three main areas: the Ihara-Selberg zeta function as a graph invariant,

Ramanujan graph construction, and the Graph Isomorphism problem.

6.1.1 The Ihara-Selberg zeta function as an invariant

We’ve already seen some results in this direction, but there is a lot of work to be

done. We will briefly summarize what is known:

1. Two k-regular graphs are cospectral if and only if they have the same Ihara-

Selberg zeta function.

2. Two (d, r)-biregular bipartite graphs are cospectral if and only if they have the

same Ihara-Selberg zeta function.

3. Non regular cospectral (or isospectral w.r.t. the laplacian) graphs can have
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different zeta functions.

4. The Ihara-Selberg zeta function determines if a graph is k-regular or not and

can determine what k if the graph is regular.

5. The coefficients of the reciprocal of the zeta function relate to concrete graph

properties.

This list of work leaves open the following interesting questions:

1. Characterize all graphs that have the same Ihara-Selberg zeta function. How

many non-isomorphic graphs are there with the same zeta function?

2. Characterize completely the coefficients of the reciprocal of the zeta function.

3. When a graph is not regular, the complex poles of the Ihara-Selberg zeta don’t

necessarily lie on a circle. What proportion of them do as the size of the graph

grows large? Does this relate to other known models?

These questions are all fairly concrete and seem to be approachable with what is

currently known. We can hope that the next few years will yield complete solutions.

6.1.2 Ramanujan graph constructions

In this section, we will outline a potential approach to constructing Ramanujan graphs

that does not seem to have been explored. There are several places where work would

need to be done for this idea to be fruitful, and we will try to point them out as we

go along. By Corollary 2.4.3, a finite k-regular graph is Ramanujan if and only if

its poles satisfy a Riemann hypothesis. The poles are, in fact, related directly to the

spectrum of the Perron–Frobenius operator T that first arises in the factorization of

the zeta function.

One strategy to construct Ramanujan graphs would be to try to construct matrices

T that yield zeta functions which satisfy the Riemann hypothesis. In particular, this
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would require constructing square matrices with an even number of rows and columns

that satisfy:

1. Every entry is zero or one.

2. Every row and column sums to k.

3. If the i, j-entry is one, the j, i-entry is zero.

4. The eigenvalues would be 1 (with a specific multiplicity), k, and eigenvalues on

the circle given by |r| =
√

k − 1.

If we could construct such a matrix, the next problem would be to construct a

simple graph from which it came. Cooper has a result which can reconstruct the

graph from the Perron–Frobenius operator T if it is known that T came from a graph

[8]. As part of this, we would need to characterize all possible matrices T which can

arise as Perron–Frobenius operators of oriented line graphs of simple graphs. This

would certainly add some more conditions to the matrices we are looking for.

The reason we propose this is because we feel there has been a great deal of

attention paid to rather direct constructions of Ramanujan graphs. Namely, certain

structures are examined and then, primarily through number theoretic methods, their

spectrum is shown to satisfy the appropriate bounds. The line of thought proposed

here offers a definite shift of perspective. It may be that the matrices T are equally

as hard to work with, but often, problems on directed graphs are much simpler than

on general graphs, so we have some hopes.

6.1.3 The graph isomorphism problem

We saw in the final chapter that the generalized Ihara-Selberg zeta function has

some application to distinguishing non-isomorphic graphs with triangles. It would be
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quite interesting to develop criteria for when two graphs with triangles have the same

generalized Ihara-Selberg zeta function.

The graph isomorphism problem, broadly stated, is, given a specific graph, to

determine quickly if another graph is isomorphic to it. For us to have an application

to this problem for graphs with triangles, we would have to find a way to avoid

needing to construct multiple hypergraphs to check. It may be interesting to replace

every triangle by a hyperedge and see what happens. Then there would only be one

hypergraph to check on each side, and computing determinants is relatively quick.

We hope to continue this line of thought in the future.
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